:: Basic Notions and Properties of Orthoposets
:: by Markus Moschner
::
:: Received February 11, 2003
:: Copyright (c) 2003-2018 Association of Mizar Users
:: (Stowarzyszenie Uzytkownikow Mizara, Bialystok, Poland).
:: This code can be distributed under the GNU General Public Licence
:: version 3.0 or later, or the Creative Commons Attribution-ShareAlike
:: License version 3.0 or later, subject to the binding interpretation
:: detailed in file COPYING.interpretation.
:: See COPYING.GPL and COPYING.CC-BY-SA for the full text of these
:: licenses, or see http://www.gnu.org/licenses/gpl.html and
:: http://creativecommons.org/licenses/by-sa/3.0/.
environ
vocabularies XBOOLE_0, RELAT_1, SUBSET_1, TARSKI, FUNCT_5, FUNCT_1, RELAT_2,
ORDERS_2, XXREAL_0, ORDINAL2, LATTICE3, BINOP_1, QMAX_1, STRUCT_0,
ROBBINS1, WAYBEL_0, YELLOW_0, EQREL_1, WAYBEL_1, LATTICES, OPOSET_1,
CARD_1;
notations TARSKI, XBOOLE_0, SUBSET_1, FUNCT_1, RELAT_1, RELAT_2, FUNCT_2,
RELSET_1, PARTFUN1, BINOP_1, DOMAIN_1, FUNCT_5, ORDINAL1, CARD_1,
STRUCT_0, ORDERS_2, LATTICE3, ROBBINS1, WAYBEL_0, WAYBEL_1, YELLOW_0,
NECKLACE, QMAX_1, PARTIT_2;
constructors REALSET2, LATTICE3, WAYBEL_1, NECKLACE, QMAX_1, FUNCT_5,
PARTIT_2;
registrations XBOOLE_0, RELAT_1, FUNCT_1, PARTFUN1, FUNCT_2, STRUCT_0,
YELLOW_0, WAYBEL24, PARTIT_2, CARD_1, RELAT_2;
requirements BOOLE, SUBSET, NUMERALS;
begin
reserve X for non empty set,
R for Relation of X;
:: Some basic definitions and theorems for later examples;
theorem :: OPOSET_1:1
for L being non empty reflexive antisymmetric RelStr for x,y being
Element of L holds x <= y implies sup {x,y} = y & inf {x,y} = x;
:: for various types of relations needed for Posets
:: Some existence conditions on non-empty relations
registration
let X be set;
cluster irreflexive asymmetric transitive for Relation of X;
end;
registration
let X, R;
let C be UnOp of X;
cluster OrthoRelStr(#X,R,C#) -> non empty;
end;
registration
cluster non empty strict for OrthoRelStr;
end;
:: Double negation property of the internal Complement
registration
let O be set;
cluster involutive for Function of O,O;
end;
:: Small example structures
definition
func TrivOrthoRelStr -> strict OrthoRelStr equals
:: OPOSET_1:def 1
OrthoRelStr (#{0}, id{0}, op1 #);
end;
notation
synonym TrivPoset for TrivOrthoRelStr;
end;
registration
cluster TrivOrthoRelStr -> 1-element;
end;
definition
func TrivAsymOrthoRelStr -> strict OrthoRelStr equals
:: OPOSET_1:def 2
OrthoRelStr (#{0},{}({0},{0}), op1 #);
end;
registration
cluster TrivAsymOrthoRelStr -> non empty;
end;
definition
let O be non empty OrthoRelStr;
attr O is Dneg means
:: OPOSET_1:def 3
ex f being Function of O,O st f = the Compl of O & f is involutive;
end;
registration
cluster TrivOrthoRelStr -> Dneg;
end;
registration
cluster Dneg for non empty OrthoRelStr;
end;
:: InternalRel based properties
definition
let O be non empty RelStr;
attr O is SubReFlexive means
:: OPOSET_1:def 4
the InternalRel of O is reflexive;
end;
reserve O for non empty RelStr;
theorem :: OPOSET_1:2
O is reflexive implies O is SubReFlexive;
theorem :: OPOSET_1:3
TrivOrthoRelStr is reflexive;
registration
cluster TrivOrthoRelStr -> reflexive;
end;
registration
cluster reflexive strict for non empty OrthoRelStr;
end;
definition
let O;
redefine attr O is irreflexive means
:: OPOSET_1:def 5
the InternalRel of O is irreflexive;
redefine attr O is irreflexive means
:: OPOSET_1:def 6
the InternalRel of O is_irreflexive_in the carrier of O;
end;
theorem :: OPOSET_1:4
TrivAsymOrthoRelStr is irreflexive;
registration
cluster TrivAsymOrthoRelStr -> irreflexive;
end;
registration
cluster irreflexive strict for non empty OrthoRelStr;
end;
:: Symmetry
definition
let O be non empty RelStr;
redefine attr O is symmetric means
:: OPOSET_1:def 7
the InternalRel of O is symmetric Relation of the carrier of O;
end;
theorem :: OPOSET_1:5
TrivOrthoRelStr is symmetric;
registration
cluster symmetric strict for non empty OrthoRelStr;
end;
:: Antisymmetry
definition
let O;
redefine attr O is antisymmetric means
:: OPOSET_1:def 8
the InternalRel of O is antisymmetric Relation of the carrier of O;
end;
registration
cluster TrivOrthoRelStr -> symmetric;
end;
registration
cluster symmetric antisymmetric strict for non empty OrthoRelStr;
end;
:: Asymmetry
definition
let O;
redefine attr O is asymmetric means
:: OPOSET_1:def 9
the InternalRel of O is_asymmetric_in the carrier of O;
end;
theorem :: OPOSET_1:6
TrivAsymOrthoRelStr is asymmetric;
registration
cluster TrivAsymOrthoRelStr -> asymmetric;
end;
registration
cluster asymmetric strict for non empty OrthoRelStr;
end;
:: Transitivity
definition
let O;
redefine attr O is transitive means
:: OPOSET_1:def 10
the InternalRel of O is transitive Relation of the carrier of O;
end;
registration
cluster reflexive symmetric antisymmetric transitive strict for non empty
OrthoRelStr;
end;
theorem :: OPOSET_1:7
TrivAsymOrthoRelStr is transitive;
registration
cluster TrivAsymOrthoRelStr -> irreflexive asymmetric transitive;
end;
registration
cluster irreflexive asymmetric transitive strict for non empty OrthoRelStr;
end;
theorem :: OPOSET_1:8
O is symmetric transitive implies O is SubReFlexive;
theorem :: OPOSET_1:9
O is irreflexive transitive implies O is asymmetric;
theorem :: OPOSET_1:10
O is asymmetric implies O is irreflexive;
begin
:: Quasiorder (Preorder)
definition
let O;
attr O is SubQuasiOrdered means
:: OPOSET_1:def 11
O is SubReFlexive transitive;
end;
notation
let O;
synonym O is SubPreOrdered for O is SubQuasiOrdered;
end;
definition
let O;
attr O is QuasiOrdered means
:: OPOSET_1:def 12
O is reflexive transitive;
end;
notation
let O;
synonym O is PreOrdered for O is QuasiOrdered;
end;
theorem :: OPOSET_1:11
O is QuasiOrdered implies O is SubQuasiOrdered;
registration
cluster QuasiOrdered -> SubQuasiOrdered for non empty OrthoRelStr;
end;
registration
cluster TrivOrthoRelStr -> QuasiOrdered;
end;
reserve O for non empty OrthoRelStr;
:: QuasiPure means complementation-order-like combination of properties
definition
let O;
attr O is QuasiPure means
:: OPOSET_1:def 13
O is Dneg QuasiOrdered;
end;
registration
cluster QuasiPure Dneg QuasiOrdered strict for non empty OrthoRelStr;
end;
registration
cluster TrivOrthoRelStr -> QuasiPure;
end;
definition
mode QuasiPureOrthoRelStr is QuasiPure non empty OrthoRelStr;
end;
:: Partial Order ---> Poset
definition
let O;
attr O is PartialOrdered means
:: OPOSET_1:def 14
O is reflexive antisymmetric transitive;
end;
registration
cluster PartialOrdered -> reflexive antisymmetric transitive for non empty
OrthoRelStr;
cluster reflexive antisymmetric transitive -> PartialOrdered for non empty
OrthoRelStr;
end;
:: Pureness for partial orders
definition
let O;
attr O is Pure means
:: OPOSET_1:def 15
O is Dneg PartialOrdered;
end;
registration
cluster Pure Dneg PartialOrdered strict for non empty OrthoRelStr;
end;
registration
cluster TrivOrthoRelStr -> Pure;
end;
definition
mode PureOrthoRelStr is Pure non empty OrthoRelStr;
end;
:: Strict Poset
definition
let O;
attr O is StrictPartialOrdered means
:: OPOSET_1:def 16
O is asymmetric transitive;
end;
notation
let O;
synonym O is StrictOrdered for O is StrictPartialOrdered;
end;
theorem :: OPOSET_1:12
O is StrictPartialOrdered implies O is irreflexive;
registration
cluster StrictPartialOrdered -> irreflexive for non empty OrthoRelStr;
end;
registration
cluster StrictPartialOrdered -> irreflexive for non empty OrthoRelStr;
end;
registration
cluster TrivAsymOrthoRelStr -> irreflexive StrictPartialOrdered;
end;
registration
cluster irreflexive StrictPartialOrdered for non empty strict OrthoRelStr;
end;
:: Quasiorder to Partial Order
reserve QO for QuasiOrdered non empty OrthoRelStr;
theorem :: OPOSET_1:13
QO is antisymmetric implies QO is PartialOrdered;
registration
cluster PartialOrdered -> reflexive transitive antisymmetric for non empty
OrthoRelStr;
end;
definition
let PO be non empty RelStr;
let f be UnOp of the carrier of PO;
attr f is Orderinvolutive means
:: OPOSET_1:def 17
f is involutive antitone;
end;
definition
let PO be non empty OrthoRelStr;
attr PO is OrderInvolutive means
:: OPOSET_1:def 18
the Compl of PO is Orderinvolutive;
end;
theorem :: OPOSET_1:14
the Compl of TrivOrthoRelStr is Orderinvolutive;
registration
cluster TrivOrthoRelStr -> OrderInvolutive;
end;
registration
cluster OrderInvolutive Pure PartialOrdered for non empty OrthoRelStr;
end;
definition
mode PreOrthoPoset is OrderInvolutive Pure PartialOrdered non empty
OrthoRelStr;
end;
definition
let PO be non empty RelStr;
let f be UnOp of the carrier of PO;
pred f QuasiOrthoComplement_on PO means
:: OPOSET_1:def 19
f is Orderinvolutive & for y
being Element of PO holds ex_sup_of {y,f.y},PO & ex_inf_of {y,f.y},PO;
end;
definition
let PO be non empty OrthoRelStr;
attr PO is QuasiOrthocomplemented means
:: OPOSET_1:def 20
ex f being Function of PO,PO
st f = the Compl of PO & f QuasiOrthoComplement_on PO;
end;
theorem :: OPOSET_1:15
TrivOrthoRelStr is QuasiOrthocomplemented;
definition
let PO be non empty RelStr;
let f be UnOp of the carrier of PO;
pred f OrthoComplement_on PO means
:: OPOSET_1:def 21
f is Orderinvolutive & for y
being Element of PO holds ex_sup_of {y,f.y},PO & ex_inf_of {y,f.y},PO & "\/"({y
,f.y},PO) is_maximum_of the carrier of PO & "/\"({y,f.y},PO) is_minimum_of the
carrier of PO;
end;
definition
let PO be non empty OrthoRelStr;
attr PO is Orthocomplemented means
:: OPOSET_1:def 22
ex f being Function of PO,PO st f
= the Compl of PO & f OrthoComplement_on PO;
end;
theorem :: OPOSET_1:16
for PO being non empty OrthoRelStr, f being UnOp of the carrier of PO
st f OrthoComplement_on PO holds f QuasiOrthoComplement_on PO;
:: PartialOrdered (non empty OrthoRelStr)
theorem :: OPOSET_1:17
TrivOrthoRelStr is Orthocomplemented;
registration
cluster TrivOrthoRelStr -> QuasiOrthocomplemented Orthocomplemented;
end;
registration
cluster Orthocomplemented QuasiOrthocomplemented PartialOrdered for
non empty
OrthoRelStr;
end;
definition
mode QuasiOrthoPoset is QuasiOrthocomplemented PartialOrdered non empty
OrthoRelStr;
mode OrthoPoset is Orthocomplemented PartialOrdered non empty OrthoRelStr;
end;