:: Representation Theorem for Heyting Lattices
:: by Jolanta Kamie\'nska
::
:: Received July 14, 1993
:: Copyright (c) 1993-2019 Association of Mizar Users
:: (Stowarzyszenie Uzytkownikow Mizara, Bialystok, Poland).
:: This code can be distributed under the GNU General Public Licence
:: version 3.0 or later, or the Creative Commons Attribution-ShareAlike
:: License version 3.0 or later, subject to the binding interpretation
:: detailed in file COPYING.interpretation.
:: See COPYING.GPL and COPYING.CC-BY-SA for the full text of these
:: licenses, or see http://www.gnu.org/licenses/gpl.html and
:: http://creativecommons.org/licenses/by-sa/3.0/.
environ
vocabularies LATTICE2, FILTER_0, LATTICES, PRE_TOPC, SUBSET_1, XBOOLE_0,
TOPS_1, TARSKI, RCOMP_1, SETFAM_1, BINOP_1, FUNCT_1, EQREL_1, STRUCT_0,
PBOOLE, CARD_FIL, INT_2, RELAT_1, ZFMISC_1, ORDINAL1, GROUP_6, FUNCT_2,
WELLORD1, XBOOLEAN, LATTICE4, OPENLATT;
notations TARSKI, XBOOLE_0, SUBSET_1, ORDINAL1, RELAT_1, FUNCT_1, FUNCT_2,
BINOP_1, SETFAM_1, DOMAIN_1, STRUCT_0, PRE_TOPC, TOPS_1, LATTICES,
LATTICE2, FILTER_0, LATTICE4;
constructors BINOP_1, DOMAIN_1, TOPS_1, LATTICE2, FILTER_1, LATTICE4,
RELSET_1, FILTER_0;
registrations XBOOLE_0, SUBSET_1, RELSET_1, STRUCT_0, LATTICES, PRE_TOPC,
FILTER_0, LATTICE2, TOPS_1, LATTICE4;
requirements BOOLE, SUBSET;
begin
registration
cluster Heyting -> implicative for 0_Lattice;
cluster implicative -> upper-bounded for Lattice;
end;
reserve T for TopSpace;
reserve A,B for Subset of T;
theorem :: OPENLATT:1
A /\ Int(A` \/ B) c= B;
theorem :: OPENLATT:2
for C being Subset of T st C is open & A /\ C c= B holds C c= Int (A` \/ B);
definition
let T be TopStruct;
func Topology_of T -> Subset-Family of T equals
:: OPENLATT:def 1
the topology of T;
end;
registration
let T;
cluster Topology_of T -> non empty;
end;
definition
let T be non empty TopSpace, P, Q be Element of Topology_of T;
redefine func P \/ Q -> Element of Topology_of T;
redefine func P /\ Q -> Element of Topology_of T;
end;
reserve T for non empty TopSpace;
reserve P,Q for Element of Topology_of T;
definition
let T;
func Top_Union T -> BinOp of Topology_of T means
:: OPENLATT:def 2
it.(P,Q) = P \/ Q;
func Top_Meet T -> BinOp of Topology_of T means
:: OPENLATT:def 3
it.(P,Q) = P /\ Q;
end;
theorem :: OPENLATT:3
for T being non empty TopSpace holds LattStr(#Topology_of T,
Top_Union T,Top_Meet T#) is Lattice;
definition
let T;
func Open_setLatt(T) -> Lattice equals
:: OPENLATT:def 4
LattStr(#Topology_of T,Top_Union T,
Top_Meet T#);
end;
theorem :: OPENLATT:4
the carrier of Open_setLatt(T) = Topology_of T;
reserve p,q for Element of Open_setLatt(T);
theorem :: OPENLATT:5
p "\/" q = p \/ q & p "/\" q = p /\ q;
theorem :: OPENLATT:6
p [= q iff p c= q;
theorem :: OPENLATT:7
for p9,q9 being Element of Topology_of T st p=p9 & q=q9 holds p
[= q iff p9 c= q9;
registration
let T;
cluster Open_setLatt(T) -> implicative;
end;
theorem :: OPENLATT:8
Open_setLatt(T) is lower-bounded & Bottom Open_setLatt(T) = {};
registration
let T;
cluster Open_setLatt(T) -> Heyting;
end;
theorem :: OPENLATT:9
Top Open_setLatt(T) = the carrier of T;
reserve L for D_Lattice;
reserve F for Filter of L;
reserve a,b for Element of L;
reserve x,X,X1,X2,Y,Z for set;
definition
let L;
func F_primeSet(L) -> set equals
:: OPENLATT:def 5
{ F: F <> the carrier of L & F is prime};
end;
theorem :: OPENLATT:10
F in F_primeSet(L) iff F <> the carrier of L & F is prime;
definition
let L;
func StoneH(L) -> Function means
:: OPENLATT:def 6
dom it = the carrier of L & it.a = { F: F in F_primeSet(L) & a in F};
end;
theorem :: OPENLATT:11
F in StoneH(L).a iff F in F_primeSet(L) & a in F;
theorem :: OPENLATT:12
x in StoneH(L).a iff ex F st F=x & F <> the carrier of L & F is
prime & a in F;
definition
let L;
func StoneS(L) -> set equals
:: OPENLATT:def 7
rng StoneH(L);
end;
registration
let L;
cluster StoneS(L) -> non empty;
end;
theorem :: OPENLATT:13
x in StoneS(L) iff ex a st x=StoneH(L).a;
theorem :: OPENLATT:14
StoneH(L).(a "\/" b) = StoneH(L).a \/ StoneH(L).b;
theorem :: OPENLATT:15
StoneH(L).(a "/\" b) = StoneH(L).a /\ StoneH(L).b;
definition
let L, a;
func SF_have a -> Subset-Family of L equals
:: OPENLATT:def 8
{ F : a in F };
end;
registration
let L;
let a;
cluster SF_have a -> non empty;
end;
theorem :: OPENLATT:16
x in SF_have a iff x is Filter of L & a in x;
theorem :: OPENLATT:17
x in SF_have b \ SF_have a implies x is Filter of L & b in x & not a in x;
theorem :: OPENLATT:18
for Z st Z <> {} & Z c= SF_have b \ SF_have a & Z is c=-linear
ex Y st Y in SF_have b \ SF_have a & for X1 st X1 in Z holds X1 c= Y;
theorem :: OPENLATT:19
not b [= a implies <.b.) in SF_have b \ SF_have a;
theorem :: OPENLATT:20
not b [= a implies ex F st F in F_primeSet(L) & not a in F & b in F;
theorem :: OPENLATT:21
a <> b implies ex F st F in F_primeSet(L);
theorem :: OPENLATT:22
a <> b implies StoneH(L).a <> StoneH(L).b;
registration
let L;
cluster StoneH(L) -> one-to-one;
end;
definition
let L;
let A,B be Element of StoneS(L);
redefine func A \/ B -> Element of StoneS(L);
redefine func A /\ B -> Element of StoneS(L);
end;
definition
let L;
func Set_Union L -> BinOp of StoneS(L) means
:: OPENLATT:def 9
for A,B being Element of StoneS(L) holds it.(A,B) = A \/ B;
func Set_Meet L -> BinOp of StoneS(L) means
:: OPENLATT:def 10
for A,B being Element of StoneS(L) holds it.(A,B) = A /\ B;
end;
theorem :: OPENLATT:23
LattStr(#StoneS(L),Set_Union L,Set_Meet L#) is Lattice;
definition
let L;
func StoneLatt L -> Lattice equals
:: OPENLATT:def 11
LattStr(#StoneS(L),Set_Union L,Set_Meet L
#);
end;
reserve p,q for Element of StoneLatt(L);
theorem :: OPENLATT:24
for L holds the carrier of StoneLatt(L) = StoneS(L);
theorem :: OPENLATT:25
p "\/" q = p \/ q & p "/\" q = p /\ q;
theorem :: OPENLATT:26
p [= q iff p c= q;
definition
let L;
::$N Stone Representation Theorem for Heyting Lattices
redefine func StoneH(L) -> Homomorphism of L,StoneLatt L;
end;
registration
let L;
cluster StoneH(L) -> bijective for Function of L,StoneLatt L;
cluster StoneLatt(L) -> distributive;
end;
theorem :: OPENLATT:27
L,StoneLatt L are_isomorphic;
registration
cluster non trivial for H_Lattice;
end;
reserve H for non trivial H_Lattice;
reserve p9,q9 for Element of H;
theorem :: OPENLATT:28
StoneH(H).(Top H) = F_primeSet(H);
theorem :: OPENLATT:29
StoneH(H).(Bottom H) = {};
theorem :: OPENLATT:30
StoneS(H) c= bool F_primeSet(H);
registration
let H;
cluster F_primeSet(H) -> non empty;
end;
definition
let H;
func HTopSpace H -> strict TopStruct means
:: OPENLATT:def 12
the carrier of it =
F_primeSet(H) & the topology of it =the set of all
union A where A is Subset of StoneS(H);
end;
registration
let H;
cluster HTopSpace H -> non empty TopSpace-like;
end;
theorem :: OPENLATT:31
the carrier of Open_setLatt(HTopSpace H) = the set of all
union A where A is Subset
of StoneS(H);
theorem :: OPENLATT:32
StoneS(H) c= the carrier of Open_setLatt(HTopSpace H);
definition
let H;
redefine func StoneH(H) -> Homomorphism of H,Open_setLatt(HTopSpace H);
end;
theorem :: OPENLATT:33
StoneH(H).(p9 => q9) = (StoneH(H).p9) => (StoneH(H).q9);
theorem :: OPENLATT:34
StoneH(H) preserves_implication;
theorem :: OPENLATT:35
StoneH(H) preserves_top;
theorem :: OPENLATT:36
StoneH(H) preserves_bottom;