:: Differentiable Functions into Real Normed Spaces
:: by Hiroyuki Okazaki , Noboru Endou , Keiko Narita and Yasunari Shidama
::
:: Received October 13, 2010
:: Copyright (c) 2010-2018 Association of Mizar Users
:: (Stowarzyszenie Uzytkownikow Mizara, Bialystok, Poland).
:: This code can be distributed under the GNU General Public Licence
:: version 3.0 or later, or the Creative Commons Attribution-ShareAlike
:: License version 3.0 or later, subject to the binding interpretation
:: detailed in file COPYING.interpretation.
:: See COPYING.GPL and COPYING.CC-BY-SA for the full text of these
:: licenses, or see http://www.gnu.org/licenses/gpl.html and
:: http://creativecommons.org/licenses/by-sa/3.0/.
environ
vocabularies NUMBERS, REAL_1, NORMSP_1, PRE_TOPC, PARTFUN1, FUNCT_1, NAT_1,
FDIFF_1, SUBSET_1, RELAT_1, RCOMP_1, TARSKI, SEQ_1, ARYTM_3, VALUED_1,
FUNCT_2, ARYTM_1, SEQ_2, ORDINAL2, SUPINF_2, FCONT_1, COMPLEX1, STRUCT_0,
CARD_1, VALUED_0, XXREAL_0, FUNCOP_1, XXREAL_2, XBOOLE_0, XXREAL_1,
FUNCT_7, ASYMPT_1;
notations TARSKI, SUBSET_1, FUNCT_1, ORDINAL1, RELSET_1, PARTFUN1, FUNCT_2,
FUNCOP_1, NUMBERS, XXREAL_0, XCMPLX_0, XREAL_0, REAL_1, NAT_1, VALUED_0,
COMPLEX1, VALUED_1, SEQ_1, SEQ_2, RCOMP_1, FDIFF_1, STRUCT_0, PRE_TOPC,
RLVECT_1, VFUNCT_1, NORMSP_0, NORMSP_1, NDIFF_1, NFCONT_3;
constructors REAL_1, FDIFF_1, VFUNCT_1, NDIFF_1, RELSET_1, RVSUM_1, BINOP_2,
INTEGR15, NAT_D, MEASURE6, NFCONT_3, COMSEQ_2, SEQ_1, NUMBERS;
registrations RELSET_1, STRUCT_0, ORDINAL1, XREAL_0, MEMBERED, FUNCT_2,
NUMBERS, VALUED_0, NORMSP_0, NORMSP_1, RELAT_1, SUBSET_1, FUNCOP_1,
NAT_1, RCOMP_1, VALUED_1, SEQ_4, FDIFF_1, SEQ_1, SEQ_2;
requirements SUBSET, REAL, BOOLE, NUMERALS, ARITHM;
begin :: Differentiable of Functions into a Real Normed Space
reserve F for RealNormSpace;
reserve G for RealNormSpace;
reserve X for set;
reserve x,x0,g,r,s,p for Real;
reserve n,m,k for Element of NAT;
reserve Y for Subset of REAL;
reserve Z for open Subset of REAL;
reserve s1,s3 for Real_Sequence;
reserve seq for sequence of G;
reserve f,f1,f2 for PartFunc of REAL,the carrier of F;
reserve h for 0-convergent non-zero Real_Sequence;
reserve c for constant Real_Sequence;
theorem :: NDIFF_3:1
(for n holds ||. seq.n .|| <= s1.n) & s1 is convergent & lim s1=0 implies
seq is convergent & lim(seq)=0.G;
theorem :: NDIFF_3:2
(s1^\k)(#)(seq^\k)= (s1(#)seq) ^\k;
definition let F;
let IT be PartFunc of REAL,the carrier of F;
attr IT is RestFunc-like means
:: NDIFF_3:def 1
IT is total & for h holds (h")(#)(IT/*h) is convergent &
lim ((h")(#)(IT/*h)) = 0.F;
end;
registration let F;
cluster RestFunc-like for PartFunc of REAL,the carrier of F;
end;
definition let F;
mode RestFunc of F is RestFunc-like PartFunc of REAL,the carrier of F;
end;
definition let F;
let IT be Function of REAL,the carrier of F;
attr IT is linear means
:: NDIFF_3:def 2
ex r be Point of F st for p be Real holds IT/.p = p*r;
end;
registration let F;
cluster linear for Function of REAL,the carrier of F;
end;
definition let F;
mode LinearFunc of F is linear Function of REAL,the carrier of F;
end;
reserve R,R1,R2 for RestFunc of F;
reserve L,L1,L2 for LinearFunc of F;
theorem :: NDIFF_3:3
L1+L2 is LinearFunc of F & L1-L2 is LinearFunc of F;
theorem :: NDIFF_3:4
r(#)L is LinearFunc of F;
theorem :: NDIFF_3:5
for h1,h2 be PartFunc of REAL, the carrier of F
for seq be Real_Sequence st rng seq c= dom h1 /\ dom h2 holds
(h1+h2)/*seq = h1/*seq+h2/*seq & (h1-h2)/*seq=h1/*seq - h2/*seq;
theorem :: NDIFF_3:6
for h1,h2 be PartFunc of REAL,the carrier of F
for seq be Real_Sequence st h1 is total & h2 is total holds
(h1+h2)/*seq = h1/*seq + h2/*seq & (h1-h2)/*seq = h1/*seq - h2/*seq;
theorem :: NDIFF_3:7
R1+R2 is RestFunc of F & R1-R2 is RestFunc of F;
theorem :: NDIFF_3:8
r(#)R is RestFunc of F;
definition let F,f;
let x0 be Real;
pred f is_differentiable_in x0 means
:: NDIFF_3:def 3
ex N being Neighbourhood of x0
st N c= dom f & ex L,R st for x st x in N
holds f/.x - f/.x0 = L/.(x-x0) + R/.(x-x0);
end;
definition
let F,f;
let x0 be Real;
assume
f is_differentiable_in x0;
func diff(f,x0) -> Point of F means
:: NDIFF_3:def 4
ex N being Neighbourhood of x0 st N c= dom f & ex L,R st it=L/.1
& for x st x in N holds f/.x-f/.x0 = L/.(x-x0) + R/.(x-x0);
end;
definition let F,f,X;
pred f is_differentiable_on X means
:: NDIFF_3:def 5
X c= dom f & for x st x in X holds f|X is_differentiable_in x;
end;
theorem :: NDIFF_3:9
f is_differentiable_on X implies X is Subset of REAL;
theorem :: NDIFF_3:10
f is_differentiable_on Z iff Z c= dom f & for x st x in Z holds
f is_differentiable_in x;
theorem :: NDIFF_3:11
f is_differentiable_on Y implies Y is open;
definition let F,f,X;
assume
f is_differentiable_on X;
func f`|X -> PartFunc of REAL,the carrier of F means
:: NDIFF_3:def 6
dom it = X & for x st x in X holds it.x = diff(f,x);
end;
theorem :: NDIFF_3:12
(Z c= dom f & ex r be Point of F st rng f = {r})
implies f is_differentiable_on Z &
for x st x in Z holds (f`|Z)/.x = 0.F;
theorem :: NDIFF_3:13
for x0 being Real for N being Neighbourhood of x0 st
f is_differentiable_in x0 & N c= dom f holds for h,c st rng c = {x0}
& rng (h+c)c= N
holds h"(#)((f/*(h+c)) - f/*c) is convergent
& diff(f,x0) = lim (h"(#)((f/*(h+c)) - f/*c));
theorem :: NDIFF_3:14
f1 is_differentiable_in x0 & f2 is_differentiable_in x0 implies
f1+f2 is_differentiable_in x0 & diff(f1+f2,x0)=diff(f1,x0)+diff(f2,x0);
theorem :: NDIFF_3:15
f1 is_differentiable_in x0 & f2 is_differentiable_in x0 implies
f1-f2 is_differentiable_in x0 & diff(f1-f2,x0)=diff(f1,x0)-diff(f2,x0);
theorem :: NDIFF_3:16
for r be Real st
f is_differentiable_in x0 holds r(#)f is_differentiable_in x0
& diff((r(#)f),x0) = r*diff(f,x0);
theorem :: NDIFF_3:17
Z c= dom (f1+f2) & f1 is_differentiable_on Z &
f2 is_differentiable_on Z implies
f1+f2 is_differentiable_on Z &
for x st x in Z holds
((f1+f2)`|Z).x = diff(f1,x) + diff(f2,x);
theorem :: NDIFF_3:18
Z c= dom (f1-f2) &
f1 is_differentiable_on Z &
f2 is_differentiable_on Z implies
f1-f2 is_differentiable_on Z &
for x st x in Z holds ((f1-f2)`|Z).x = diff(f1,x) - diff(f2,x);
theorem :: NDIFF_3:19
Z c= dom (r(#)f) & f is_differentiable_on Z implies
r(#)f is_differentiable_on Z &
for x st x in Z holds ((r(#) f)`|Z).x =r*diff(f,x);
theorem :: NDIFF_3:20
Z c= dom f & f|Z is constant implies f is_differentiable_on Z & for x
st x in Z holds (f`|Z).x = 0.F;
theorem :: NDIFF_3:21
for r,p be Point of F,Z,f
st Z c= dom f & (for x st x in Z holds f/.x = x*r + p)
holds f is_differentiable_on Z
& for x st x in Z holds (f`|Z).x = r;
theorem :: NDIFF_3:22
for x0 being Real st f is_differentiable_in x0 holds
f is_continuous_in x0;
theorem :: NDIFF_3:23
f is_differentiable_on X implies (f|X) is continuous;
theorem :: NDIFF_3:24
f is_differentiable_on X & Z c= X implies f is_differentiable_on Z;
theorem :: NDIFF_3:25
ex R be RestFunc of F st R/.0=0.F & R is_continuous_in 0;
definition let F;
let f be PartFunc of REAL, the carrier of F;
attr f is differentiable means
:: NDIFF_3:def 7
f is_differentiable_on dom f;
end;
registration let F;
cluster differentiable for Function of REAL, the carrier of F;
end;
theorem :: NDIFF_3:26
for f being differentiable PartFunc of REAL, the carrier of F
st Z c= dom f holds f is_differentiable_on Z;