:: Subalgebras of a Many Sorted Algebra. Lattice of Subalgebras
:: by Ewa Burakowska
::
:: Received April 25, 1994
:: Copyright (c) 1994-2016 Association of Mizar Users
:: (Stowarzyszenie Uzytkownikow Mizara, Bialystok, Poland).
:: This code can be distributed under the GNU General Public Licence
:: version 3.0 or later, or the Creative Commons Attribution-ShareAlike
:: License version 3.0 or later, subject to the binding interpretation
:: detailed in file COPYING.interpretation.
:: See COPYING.GPL and COPYING.CC-BY-SA for the full text of these
:: licenses, or see http://www.gnu.org/licenses/gpl.html and
:: http://creativecommons.org/licenses/by-sa/3.0/.
environ
vocabularies PBOOLE, RELAT_1, XBOOLE_0, FUNCT_1, SUBSET_1, CARD_3, TARSKI,
STRUCT_0, MSUALG_1, UNIALG_2, FINSEQ_1, MARGREL1, PARTFUN1, FUNCT_2,
ZFMISC_1, QC_LANG1, SETFAM_1, EQREL_1, BINOP_1, LATTICES, XXREAL_2,
MSUALG_2, SETLIM_2;
notations TARSKI, XBOOLE_0, ZFMISC_1, SUBSET_1, STRUCT_0, RELAT_1, FUNCT_1,
FUNCT_2, FINSEQ_1, SETFAM_1, FINSEQ_2, LATTICES, BINOP_1, CARD_3, PBOOLE,
MSUALG_1;
constructors SETFAM_1, BINOP_1, CARD_3, LATTICES, MSUALG_1, RELSET_1;
registrations XBOOLE_0, SUBSET_1, RELAT_1, FUNCT_1, PBOOLE, STRUCT_0,
LATTICES, MSUALG_1, FINSEQ_1, FUNCT_2, PARTFUN1, RELSET_1;
requirements BOOLE, SUBSET;
begin
::
:: Auxiliary facts about Many Sorted Sets.
::
reserve x,y for object;
registration
let I be set, X be ManySortedSet of I, Y be non-empty ManySortedSet of I;
cluster X (\/) Y -> non-empty;
cluster Y (\/) X -> non-empty;
end;
theorem :: MSUALG_2:1
for I be non empty set, X, Y be ManySortedSet of I, i be Element
of I* holds product ((X (/\) Y)*i) = product(X * i) /\ product(Y * i);
begin
::
:: Constants of a Many Sorted Algebra.
::
reserve S for non void non empty ManySortedSign,
o for OperSymbol of S,
U0,U1, U2 for MSAlgebra over S;
definition
let S be non empty ManySortedSign, U0 be MSAlgebra over S;
mode MSSubset of U0 is ManySortedSubset of the Sorts of U0;
end;
definition
let S be non empty ManySortedSign;
let IT be SortSymbol of S;
attr IT is with_const_op means
:: MSUALG_2:def 1
ex o be OperSymbol of S st (the Arity
of S).o = {} & (the ResultSort of S).o = IT;
end;
definition
let IT be non empty ManySortedSign;
attr IT is all-with_const_op means
:: MSUALG_2:def 2
for s be SortSymbol of IT holds s is with_const_op;
end;
registration
let A be non empty set, B be set, a be Function of B,A*, r be Function of B,
A;
cluster ManySortedSign(#A,B,a,r#) -> non empty;
end;
registration
cluster non void all-with_const_op strict for non empty ManySortedSign;
end;
definition
let S be non void non empty ManySortedSign, U0 be MSAlgebra over S, s be
SortSymbol of S;
func Constants(U0,s) -> Subset of (the Sorts of U0).s means
:: MSUALG_2:def 3
ex A
being non empty set st A =(the Sorts of U0).s & it = { a where a is Element of
A: ex o be OperSymbol of S st (the Arity of S).o = {} & (the ResultSort of S).
o = s & a in rng Den(o,U0)} if (the Sorts of U0).s <> {} otherwise it = {};
end;
definition
let S be non void non empty ManySortedSign, U0 be MSAlgebra over S;
func Constants (U0) -> MSSubset of U0 means
:: MSUALG_2:def 4
for s be SortSymbol of S holds it.s = Constants(U0,s);
end;
registration
let S be all-with_const_op non void non empty ManySortedSign, U0 be
non-empty MSAlgebra over S, s be SortSymbol of S;
cluster Constants(U0,s) -> non empty;
end;
registration
let S be non void all-with_const_op non empty ManySortedSign, U0 be
non-empty MSAlgebra over S;
cluster Constants(U0) -> non-empty;
end;
begin
::
:: Subalgebras of a Many Sorted Algebra.
::
definition
let S be non void non empty ManySortedSign, U0 be MSAlgebra over S, o be
OperSymbol of S, A be MSSubset of U0;
pred A is_closed_on o means
:: MSUALG_2:def 5
rng ((Den(o,U0))|((A# * the Arity of S).o )) c= (A * the ResultSort of S).o;
end;
definition
let S be non void non empty ManySortedSign, U0 be MSAlgebra over S, A be
MSSubset of U0;
attr A is opers_closed means
:: MSUALG_2:def 6
for o be OperSymbol of S holds A is_closed_on o;
end;
theorem :: MSUALG_2:2
for S be non void non empty ManySortedSign, o be OperSymbol of S,
U0 be MSAlgebra over S, B0, B1 be MSSubset of U0 st B0 c= B1 holds ((B0# * the
Arity of S).o) c= ((B1# * the Arity of S).o);
definition
let S be non void non empty ManySortedSign, U0 be MSAlgebra over S, o be
OperSymbol of S, A be MSSubset of U0;
assume
A is_closed_on o;
func o/.A ->Function of (A# * the Arity of S).o, (A * the ResultSort of S).o
equals
:: MSUALG_2:def 7
(Den(o,U0)) | ((A# * the Arity of S).o);
end;
definition
let S be non void non empty ManySortedSign, U0 be MSAlgebra over S, A be
MSSubset of U0;
func Opers(U0,A) -> ManySortedFunction of (A# * the Arity of S),(A * the
ResultSort of S) means
:: MSUALG_2:def 8
for o be OperSymbol of S holds it.o = o/.A;
end;
theorem :: MSUALG_2:3
for U0 being MSAlgebra over S for B being MSSubset of U0 st B=the
Sorts of U0 holds B is opers_closed & for o holds o/.B = Den(o,U0);
theorem :: MSUALG_2:4
for B being MSSubset of U0 st B=the Sorts of U0 holds Opers(U0,B)
= the Charact of U0;
definition
let S be non void non empty ManySortedSign, U0 be MSAlgebra over S;
mode MSSubAlgebra of U0 -> MSAlgebra over S means
:: MSUALG_2:def 9
the Sorts of it is
MSSubset of U0 & for B be MSSubset of U0 st B = the Sorts of it holds B is
opers_closed & the Charact of it = Opers(U0,B);
end;
registration
let S be non void non empty ManySortedSign, U0 be MSAlgebra over S;
cluster strict for MSSubAlgebra of U0;
end;
registration
let S be non void non empty ManySortedSign, U0 be non-empty MSAlgebra over S;
cluster MSAlgebra (#the Sorts of U0,the Charact of U0#) -> non-empty;
end;
registration
let S be non void non empty ManySortedSign, U0 be non-empty MSAlgebra over S;
cluster non-empty strict for MSSubAlgebra of U0;
end;
theorem :: MSUALG_2:5
the MSAlgebra of U0 = the MSAlgebra of U1 implies U0 is MSSubAlgebra of U1;
theorem :: MSUALG_2:6
U0 is MSSubAlgebra of U1 & U1 is MSSubAlgebra of U2 implies U0 is
MSSubAlgebra of U2;
theorem :: MSUALG_2:7
U1 is MSSubAlgebra of U2 & U2 is MSSubAlgebra of U1
implies the MSAlgebra of U1 = the MSAlgebra of U2;
theorem :: MSUALG_2:8
for U1,U2 be MSSubAlgebra of U0 st the Sorts of U1 c= the Sorts
of U2 holds U1 is MSSubAlgebra of U2;
theorem :: MSUALG_2:9
for U1,U2 be MSSubAlgebra of U0 st the Sorts of U1 = the
Sorts of U2 holds the MSAlgebra of U1 = the MSAlgebra of U2;
theorem :: MSUALG_2:10
for S be non void non empty ManySortedSign, U0 be MSAlgebra over
S, U1 be MSSubAlgebra of U0 holds Constants(U0) is MSSubset of U1;
theorem :: MSUALG_2:11
for S be non void all-with_const_op non empty ManySortedSign, U0 be
non-empty MSAlgebra over S, U1 be non-empty MSSubAlgebra of U0 holds Constants(
U0) is non-empty MSSubset of U1;
theorem :: MSUALG_2:12
for S be non void all-with_const_op non empty ManySortedSign, U0 be
non-empty MSAlgebra over S, U1,U2 be non-empty MSSubAlgebra of U0 holds (the
Sorts of U1) (/\) (the Sorts of U2) is non-empty;
begin
::
:: Many Sorted Subsets of a Many Sorted Algebra.
::
definition
let S be non void non empty ManySortedSign, U0 be MSAlgebra over S, A be
MSSubset of U0;
func SubSort(A) -> set means
:: MSUALG_2:def 10
for x be object holds x in it iff x in
Funcs(the carrier of S, bool (Union (the Sorts of U0))) & x is MSSubset of U0 &
for B be MSSubset of U0 st B = x holds B is opers_closed & Constants(U0) c= B &
A c= B;
end;
registration
let S be non void non empty ManySortedSign, U0 be MSAlgebra over S, A be
MSSubset of U0;
cluster SubSort(A) -> non empty;
end;
definition
let S be non void non empty ManySortedSign, U0 be MSAlgebra over S;
func SubSort(U0) -> set means
:: MSUALG_2:def 11
for x be object holds x in it iff x in
Funcs(the carrier of S, bool Union the Sorts of U0) & x is MSSubset of U0 & for
B be MSSubset of U0 st B = x holds B is opers_closed;
end;
registration
let S be non void non empty ManySortedSign, U0 be MSAlgebra over S;
cluster SubSort(U0) -> non empty;
end;
definition
let S be non void non empty ManySortedSign, U0 be MSAlgebra over S, e be
Element of SubSort(U0);
func @e -> MSSubset of U0 equals
:: MSUALG_2:def 12
e;
end;
theorem :: MSUALG_2:13
for A,B be MSSubset of U0 holds B in SubSort(A) iff B is
opers_closed & Constants(U0) c= B & A c= B;
theorem :: MSUALG_2:14
for B be MSSubset of U0 holds B in SubSort(U0) iff B is opers_closed;
definition
let S be non void non empty ManySortedSign, U0 be MSAlgebra over S, A be
MSSubset of U0, s be SortSymbol of S;
func SubSort(A,s) -> set means
:: MSUALG_2:def 13
for x be object holds x in it iff ex B
be MSSubset of U0 st B in SubSort(A) & x = B.s;
end;
registration
let S be non void non empty ManySortedSign, U0 be MSAlgebra over S, A be
MSSubset of U0, s be SortSymbol of S;
cluster SubSort(A,s) -> non empty;
end;
definition
let S be non void non empty ManySortedSign, U0 be MSAlgebra over S, A be
MSSubset of U0;
func MSSubSort(A) -> MSSubset of U0 means
:: MSUALG_2:def 14
for s be SortSymbol of S holds it.s = meet (SubSort(A,s));
end;
theorem :: MSUALG_2:15
for A be MSSubset of U0 holds Constants(U0) (\/) A c= MSSubSort(A);
theorem :: MSUALG_2:16
for A be MSSubset of U0 st Constants(U0) (\/) A is non-empty holds
MSSubSort(A) is non-empty;
theorem :: MSUALG_2:17
for A be MSSubset of U0 for B be MSSubset of U0 st B in SubSort(
A) holds ((MSSubSort A)# * (the Arity of S)).o c= (B# * (the Arity of S)).o;
theorem :: MSUALG_2:18
for A be MSSubset of U0 for B be MSSubset of U0 st B in SubSort(
A) holds rng (Den(o,U0)|(((MSSubSort A)# * (the Arity of S)).o)) c= (B * (the
ResultSort of S)).o;
theorem :: MSUALG_2:19
for A be MSSubset of U0 holds rng ((Den(o,U0))|(((MSSubSort A)#
* (the Arity of S)).o)) c= ((MSSubSort A) * (the ResultSort of S)).o;
theorem :: MSUALG_2:20
for A be MSSubset of U0 holds MSSubSort(A) is opers_closed & A
c= MSSubSort(A);
begin
::
:: Operations on Subalgebras of a Many Sorted Algebra.
::
definition
let S be non void non empty ManySortedSign, U0 be MSAlgebra over S, A be
MSSubset of U0;
assume
A is opers_closed;
func U0|A -> strict MSSubAlgebra of U0 equals
:: MSUALG_2:def 15
MSAlgebra (#A, Opers(
U0,A) qua ManySortedFunction of (A# * the Arity of S),(A * the ResultSort of S)
#);
end;
definition
let S be non void non empty ManySortedSign, U0 be MSAlgebra over S, U1,U2 be
MSSubAlgebra of U0;
func U1 /\ U2 -> strict MSSubAlgebra of U0 means
:: MSUALG_2:def 16
the Sorts of it = (the Sorts of U1) (/\) (the Sorts of U2) &
for B be MSSubset of U0 st B=the Sorts of it
holds B is opers_closed & the Charact of it = Opers(U0,B);
end;
definition
let S be non void non empty ManySortedSign, U0 be MSAlgebra over S, A be
MSSubset of U0;
func GenMSAlg(A) -> strict MSSubAlgebra of U0 means
:: MSUALG_2:def 17
A is MSSubset of
it & for U1 be MSSubAlgebra of U0 st A is MSSubset of U1 holds it is
MSSubAlgebra of U1;
end;
registration
let S be non void non empty ManySortedSign, U0 be non-empty MSAlgebra over S
, A be non-empty MSSubset of U0;
cluster GenMSAlg(A) -> non-empty;
end;
theorem :: MSUALG_2:21
for S be non void non empty ManySortedSign, U0 be
MSAlgebra over S, B be MSSubset of U0 st B = the Sorts of U0 holds GenMSAlg(B)
= the MSAlgebra of U0;
theorem :: MSUALG_2:22
for S be non void non empty ManySortedSign, U0 be MSAlgebra over
S, U1 be MSSubAlgebra of U0, B be MSSubset of U0 st B = the Sorts of U1
holds GenMSAlg(B) = the MSAlgebra of U1;
theorem :: MSUALG_2:23
for S be non void non empty ManySortedSign, U0 be non-empty
MSAlgebra over S, U1 be MSSubAlgebra of U0 holds GenMSAlg(Constants(U0)) /\ U1
= GenMSAlg(Constants(U0));
definition
let S be non void non empty ManySortedSign, U0 be non-empty MSAlgebra over S
, U1,U2 be MSSubAlgebra of U0;
func U1 "\/" U2 -> strict MSSubAlgebra of U0 means
:: MSUALG_2:def 18
for A be MSSubset of U0 st A = (the Sorts of U1) (\/) (the Sorts of U2)
holds it = GenMSAlg(A);
end;
theorem :: MSUALG_2:24
for S be non void non empty ManySortedSign,U0 be non-empty
MSAlgebra over S, U1 be MSSubAlgebra of U0, A,B be MSSubset of U0
st B = A (\/) the Sorts of U1 holds GenMSAlg(A) "\/" U1 = GenMSAlg(B);
theorem :: MSUALG_2:25
for S be non void non empty ManySortedSign, U0 be non-empty
MSAlgebra over S, U1 be MSSubAlgebra of U0, B be MSSubset of U0 st B = the
Sorts of U0 holds GenMSAlg(B) "\/" U1 = GenMSAlg(B);
theorem :: MSUALG_2:26
for S be non void non empty ManySortedSign,U0 be non-empty
MSAlgebra over S, U1,U2 be MSSubAlgebra of U0 holds U1 "\/" U2 = U2 "\/" U1;
theorem :: MSUALG_2:27
for S be non void non empty ManySortedSign, U0 be non-empty
MSAlgebra over S, U1,U2 be MSSubAlgebra of U0 holds U1 /\ (U1"\/"U2) =
the MSAlgebra of U1;
theorem :: MSUALG_2:28
for S be non void non empty ManySortedSign, U0 be non-empty
MSAlgebra over S, U1,U2 be MSSubAlgebra of U0 holds (U1 /\ U2)"\/"U2 =
the MSAlgebra of U2;
begin
::
:: The Lattice of SubAlgebras of a Many Sorted Algebra.
::
definition
let S be non void non empty ManySortedSign, U0 be MSAlgebra over S;
func MSSub(U0) -> set means
:: MSUALG_2:def 19
for x being object holds x in it iff x is strict MSSubAlgebra of U0;
end;
registration
let S be non void non empty ManySortedSign, U0 be MSAlgebra over S;
cluster MSSub(U0) -> non empty;
end;
definition
let S be non void non empty ManySortedSign, U0 be non-empty MSAlgebra over S;
func MSAlg_join(U0) -> BinOp of (MSSub(U0)) means
:: MSUALG_2:def 20
for x,y be Element
of MSSub(U0) holds for U1,U2 be strict MSSubAlgebra of U0 st x = U1 & y = U2
holds it.(x,y) = U1 "\/" U2;
end;
definition
let S be non void non empty ManySortedSign, U0 be non-empty MSAlgebra over S;
func MSAlg_meet(U0) -> BinOp of (MSSub(U0)) means
:: MSUALG_2:def 21
for x,y be Element
of MSSub(U0) holds for U1,U2 be strict MSSubAlgebra of U0 st x = U1 & y = U2
holds it.(x,y) = U1 /\ U2;
end;
reserve U0 for non-empty MSAlgebra over S;
theorem :: MSUALG_2:29
MSAlg_join(U0) is commutative;
theorem :: MSUALG_2:30
MSAlg_join(U0) is associative;
theorem :: MSUALG_2:31
for S be non void non empty ManySortedSign, U0 be non-empty
MSAlgebra over S holds MSAlg_meet(U0) is commutative;
theorem :: MSUALG_2:32
for S be non void non empty ManySortedSign, U0 be non-empty
MSAlgebra over S holds MSAlg_meet(U0) is associative;
definition
let S be non void non empty ManySortedSign, U0 be non-empty MSAlgebra over S;
func MSSubAlLattice(U0) -> strict Lattice equals
:: MSUALG_2:def 22
LattStr (# MSSub(U0),
MSAlg_join(U0), MSAlg_meet(U0) #);
end;
theorem :: MSUALG_2:33
for S be non void non empty ManySortedSign, U0 be non-empty
MSAlgebra over S holds MSSubAlLattice(U0) is bounded;
registration
let S be non void non empty ManySortedSign, U0 be non-empty MSAlgebra over S;
cluster MSSubAlLattice(U0) -> bounded;
end;
theorem :: MSUALG_2:34
for S be non void non empty ManySortedSign, U0 be non-empty MSAlgebra
over S holds Bottom (MSSubAlLattice(U0)) = GenMSAlg(Constants(U0));
theorem :: MSUALG_2:35
for S be non void non empty ManySortedSign, U0 be non-empty
MSAlgebra over S, B be MSSubset of U0 st B = the Sorts of U0 holds Top (
MSSubAlLattice(U0)) = GenMSAlg(B);
theorem :: MSUALG_2:36
for S be non void non empty ManySortedSign, U0 be non-empty
MSAlgebra over S holds Top (MSSubAlLattice(U0)) = the MSAlgebra of U0;
theorem :: MSUALG_2:37
for S being non void non empty ManySortedSign, U0 being MSAlgebra over
S holds MSAlgebra (#the Sorts of U0,the Charact of U0#) is MSSubAlgebra of U0
;
theorem :: MSUALG_2:38
for S being non void non empty ManySortedSign, U0 being MSAlgebra over
S, A being MSSubset of U0 holds the Sorts of U0 in SubSort(A);
theorem :: MSUALG_2:39
for S being non void non empty ManySortedSign, U0 being MSAlgebra over
S, A being MSSubset of U0 holds SubSort(A) c= SubSort(U0);