:: Euclid's Algorithm
:: by Andrzej Trybulec and Yatsuka Nakamura
::
:: Received October 8, 1993
:: Copyright (c) 1993-2018 Association of Mizar Users
:: (Stowarzyszenie Uzytkownikow Mizara, Bialystok, Poland).
:: This code can be distributed under the GNU General Public Licence
:: version 3.0 or later, or the Creative Commons Attribution-ShareAlike
:: License version 3.0 or later, subject to the binding interpretation
:: detailed in file COPYING.interpretation.
:: See COPYING.GPL and COPYING.CC-BY-SA for the full text of these
:: licenses, or see http://www.gnu.org/licenses/gpl.html and
:: http://creativecommons.org/licenses/by-sa/3.0/.
environ
vocabularies NUMBERS, SUBSET_1, AMI_3, CARD_1, NAT_1, AMI_1, FUNCOP_1,
RELAT_1, GRAPHSP, FUNCT_4, FSM_1, FUNCT_1, XBOOLE_0, TARSKI, ARYTM_3,
INT_1, XXREAL_0, MSUALG_1, INT_2, COMPLEX1, PARTFUN1, TURING_1, STRUCT_0,
AMI_4, EXTPRO_1, FINSET_1, COMPOS_1, XCMPLX_0;
notations TARSKI, XBOOLE_0, ENUMSET1, SUBSET_1, ORDINAL1, NUMBERS, RELAT_1,
FUNCT_1, FINSET_1, XCMPLX_0, INT_1, NAT_1, FUNCOP_1, INT_2, FUNCT_4,
STRUCT_0, PARTFUN1, MEMSTR_0, COMPOS_1, EXTPRO_1, AMI_3, XXREAL_0;
constructors NAT_D, AMI_3, RELSET_1, PRE_POLY, DOMAIN_1;
registrations ORDINAL1, RELSET_1, XXREAL_0, XREAL_0, NAT_1, INT_1, STRUCT_0,
AMI_3, XBOOLE_0, FINSET_1, MEMSTR_0, FUNCT_4, FUNCOP_1, RELAT_1,
COMPOS_0;
requirements REAL, NUMERALS, SUBSET, BOOLE, ARITHM;
begin :: Preliminaries
reserve i,j,k for Nat;
begin :: Euclid's algorithm
definition
func Euclid-Algorithm -> NAT-defined
(the InstructionsF of SCM)-valued finite Function
equals
:: AMI_4:def 1
(0 .--> (dl.2 := dl.1)) +* ((1 .--> Divide(dl.0,dl.1)) +*
((2 .--> (dl.0 := dl.2)) +* ((3 .--> (dl.1 >0_goto 0)) +*
(4 .--> halt SCM))));
end;
theorem :: AMI_4:1
dom (Euclid-Algorithm qua Function) = 5;
begin :: Natural semantics of the program
theorem :: AMI_4:2
for s being State of SCM
for P being Instruction-Sequence of SCM
st Euclid-Algorithm c= P
for k st IC Comput(P,s,k) = 0 holds IC Comput(P,s,k+1) = 1 &
Comput(P,s,k+1).dl.0 = Comput(P,s,k).dl.0 &
Comput(P,s,k+1).dl.1 = Comput(P,s,k).dl.1 &
Comput(P,s,k+1).dl.2 = Comput(P,s,k).dl.1;
theorem :: AMI_4:3
for s being State of SCM
for P being Instruction-Sequence of SCM
st Euclid-Algorithm c= P
for k st IC
Comput(P,s,k) = 1 holds IC Comput(P,s,k+1) = 2 &
Comput(P,s,k+1).dl.0
= Comput(P,s,k).dl.0 div Comput(P,s,k).dl.1 &
Comput(P,s,k+1).dl.1 =
Comput(P,s,k).dl.0 mod Comput(P,s,k).dl.1 & Comput(P,s,k+1).dl.2 =
Comput(P,s,k).dl.2;
theorem :: AMI_4:4
for s being State of SCM
for P being Instruction-Sequence of SCM
st Euclid-Algorithm c= P
for k st IC
Comput(P,s,k) = 2 holds IC Comput(P,s,k+1) = 3 &
Comput(P,s,k+1).dl.0
= Comput(P,s,k).dl.2 & Comput(P,s,k+1).dl.1 =
Comput(P,s,k).dl.1 &
Comput(P,s,k+1).dl.2 = Comput(P,s,k).dl.2;
theorem :: AMI_4:5
for s being State of SCM
for P being Instruction-Sequence of SCM
st Euclid-Algorithm c= P
for k st IC
Comput(P,s,k) = 3 holds ( Comput(P,s,k).dl.1 > 0
implies IC Comput(P,s,k+1) = 0) &
( Comput(P,s,k).dl.1 <= 0 implies IC Comput(P,s,k+1) = 4) &
Comput(P,s,k+1).dl.0 = Comput(P,s,k).dl.0 & Comput(P,s,k+1).dl.1 =
Comput(P,s,k).dl.1;
theorem :: AMI_4:6
for s being State of SCM
for P being Instruction-Sequence of SCM
st Euclid-Algorithm c= P
for k,i st IC
Comput(P,s,k) = 4 holds Comput(P,s,k+i) = Comput(P,s,k);
theorem :: AMI_4:7
for s being 0-started State of SCM
for P being Instruction-Sequence of SCM
st Euclid-Algorithm c= P
for x, y being Integer st s.dl.0 = x & s.dl.1 = y & x > 0 & y > 0 holds (
Result(P,s)).dl.0 = x gcd y;
definition
func Euclid-Function -> PartFunc of FinPartSt SCM, FinPartSt SCM means
:: AMI_4:def 2
for p,q being FinPartState of SCM holds [p,q] in it iff ex x,y being
Integer st x > 0 & y > 0 & p = (dl.0,dl.1) --> (x,y) & q = dl.0 .--> (x gcd y);
end;
theorem :: AMI_4:8
for p being set holds p in dom Euclid-Function iff ex x,y being
Integer st x > 0 & y > 0 & p = (dl.0,dl.1) --> (x,y);
theorem :: AMI_4:9
for i,j being Integer st i > 0 & j > 0 holds Euclid-Function.((
dl.0,dl.1) --> (i,j)) = dl.0 .--> (i gcd j);
registration
cluster Euclid-Algorithm -> (the InstructionsF of SCM)-valued;
end;
registration
cluster Euclid-Algorithm -> non halt-free;
end;
theorem :: AMI_4:10
Euclid-Algorithm, Start-At(0,SCM) computes Euclid-Function;