.

]

Acta Informatica 22, 311-331 (1985) l DA XJ-
Nffpatica

@ Springer-Verlag 19835

Proving Properties of Pascal Programs in MIZAR 2

Piotr Rudnicki* and Wiodzimierz Drabent

" Tnstitute of Computer Science, Polish Academy of Sciences, P.O. Box 22,
PL-00-901 Warszawa PKIN, Poland

Summary. In this paper we present the so called natural semantics for a
subset of Pascal programming language. A set of sentences of first order
predicate calculus defines the meaning of the Pascal language constructs.
The meaning of a specific program is defined separately by another set of
sentences which can be generated automatically. Both these sets together
constitute axiomatics of a theory, called the theory of a specific program.
The axiomatics is built in such a way that its logical consequences describe
all the computational processes defined by the program. Proofs of proper-
ties for two small programs are discussed in detail. These properties and
their proofs are recorded in the MIZAR 2 language — a computer for-
malization of predicate calculus. MIZAR 2 proof checker was used to
verify the proofs.

1. Introduction

As a foundation we take the natural semantics of a subset of the Pascal
programming language defined by a set of the first order logic sentences. We
discuss a method for describing a program by another set of first order
sentences. In particular we discuss a software system which has been developed
to automatize this process. Combining these two sets of sentences with the
properties of used data types one may {ry to prove, using the ordinary rules of
logic, any program property, eg. correctness and termination. This is done for
two small sample programs. “

The idea of defining the semantics of a programming language in first order
logic 18 due to Burstall [1]. A modified version of this idea was also given by
Winkowski [9]. The starting point of this approach is: from an abstract point
of view ecach program defines a system

M=(S,R)

* Present address: Department of Computing Science, The University of Alberta, Edmonton,
Alberta T6G 2HI, Canada

312 P. Rudnicki and W. Drabent

where § is a set of McCarthy state vectors {({controly, {data>) and RS xS is

a transition — or next state — relation. Burstall’s ides was to characterize such a

system by first order axioms, some of them reflecting the semantics of the

programming language and others describing the program under consideration.
For instance, the meaning of the following instruction

I goto 2

is generally defined by the Pascal semantics and can be expressed by the axiom

(95,5 V5Rs & control(sy=1 = control{y})=2 &
data{s)=datal{s').

If a program contains also an instruction labelled by 2 and the instruction is
accessible from the point of jump then this fact is expressed by another axiom
specific to the program, namely

(7 s){control{s)=1 = (A5 R}

More complicated cases will be discussed in the sequel.
Winkowski [97 characterizes the set of computations of M instead of M
itself. A computation of M is a sequence of state vectors

Sg3815855 0

satisfying s, Rs,, 5, Rs,,... that possibly terminates, ie. its last state is not in
the domain of R, Each initial subsequence

S0581085, 0,8

of such a computation C is called a history of €. Given such a history h we
define stateth) as s, and call it the resulting state of h. We will consider only
deterministic systems with the transition relation being a function. If there
exists 5, 4 such that

is also a history &' of C then we say that &' follows h and write B =unext{h).
Further we will in fact be concerned with a system equivalent to M of the form

M = (5% next).

We will present a way of building a set of first order axioms characterizing
the semantics of a program. The axioms will implicitly define any computation
C of the program in terms of histories of C, their order represented by the
function next and the resulting states of histories. For instance, the axiom
describing

1: goto 2
is now
(Y h) {conrrol (state(h))=1 =
control(state{next (=2
data{stare{(next{m =data({srate{h}}.

Proving Properties of Pascal Programs in MIZAR 2 313

Some effort has been made to automatize the process of deriving axioms
which define the meaning of a program from the program text (Oryszczyszyn
[51). The idea was to develop a software system called DESCRIBER which
produces axiomatic descriptions of programs written in a subset of Pascal. The
descriptions are formulated in a language called MIZAR 2 (Trybulec [71)
which is a computer oriented formalization of the first order functional cal-
culus, elements of set theory and natural deduction. The proofs for properties
of programs may also be recorded in that language. The language MIZAR 2
has been implemented on ICL 1900 machines, i.e. there exists a processor of this
language, which contains a module for checking prools and inference steps
recorded in MIZAR 2 input texts.

In Sect.2 we shall explain the approach to the programming language
semantics, the idea of the DESCRIBER and we shall illustrate {through an
example already recorded in MIZAR 2) how this system works. In Sects. 3 and
4 we formulate and prove properties of programs after mcluding specific data
type theory into the theory giving the meaning of programs.

We hope that the approach may become useful in dealing with lower level
properties of programs (like implementation of abstract data types, memory
allocation, variable aliasing, non-structural flow of controll. The natural seman-
tics alsc makes possible proving properties beyond partial correciness, for
instance termination.

2. Program Description Technigue

2.1. The Role of the MIZAR 2 Language

The MIZAR 2 language (Trybulec [77]) serves to record reasonings conducted
in the first order logic augmented by some notions of set theory. There exists a
compuier processor for the language which determines whether an input text
complies with the MIZAR 2 syntax rules. It contains a checking module which
checks whether the recorded inferences are consistent with the rules of logic,

in the experiments reported in this paper the MIZAR 2 language plays an
essential role. In this language we will formulate:
— the set of sentences defining the meaning of the program,
- properties of the program to be proven,
— proofs of these properties.
The structure of the MIZAR 2 texts is similar to that of mathematical articles.
In the first part of such a text, called environment or preliminaries, we display
notions and facts assumed to be given. In the second part — called the text
proper - we formulate and prove theorems {by hand}

In order to facilitate the reading of appendices containing the entire MI-
ZAR 2 texts we will gradually introduce the notation of this language.

2.2. Approach to the Semantics

In this work we apply the natural semantics of the programming langnage, cf.
Burstall [1], Winkowski {9]. The natural semantics originates from looking at

34 P. Rudsnicki and W. Drabent

a program in terms of a compiler or even in terms of the machine code
produced by a compiler. This approach reminds the operational semantics at
least in the underlying intuition.

The notions of the history of computation and the control point (instruction
location) are basic and were partially explained in Sect. 1. The other primitive
notions are that of value, of address where the value 1s stored and of the
valuation of an address in a history. An address is also treated as a value, 1o a
member of a certain set of addresses — elsewhere called a memory. The
meaning of a variable is associated with an element of a set of addresses. The
semantics of an instruction is understood as a function which (possibly) changes
the contents of memory and determines the instruction to be performed
next. Treatment of procedures and functions corresponds to their usual imple-
mentation ~ involving activation records, return addresses and static/dynamic
links.

The meaning of Pascal statements is defined here in an axiomatic way. We
adopt a set of axioms as the full characterization of the Pascal statements
meaning. Despite the similar name this should not be confused with the
Hoare’s axiomatic semantics. Observe that we can formulate (and prove} not
only partial correctness of a statement with respect to pre- and postcondition
but also other program properties. This includes termination and those features
of computational process which are inexpressible in terms of mnitial/final states.
Such features are significant e.g when adequacy of simulation programs is
concerned, cf. [107].

The natural semantics of the Pascal programming language was presented
by Bylinski [27 and concerns the Pascal version as reported by Jensen and
Wirth [3]. The method of obtaining a description {(ie. the set of axioms
reflecting meaning) for a specific Pascal program is given by Oryszezyszyn [51.
The approach of [2, 5] to procedures and functions does not seem to be
satisfactory and work on improving it is in progress. Here we are not going to
report the whole of [2] and [5]. We limit the presentation only to those
features of Pascal which are necessary to discuss examples in Sects. 3 and 4.
We will present the semantics and the program description technique for the
following Pascal notions:

vvvvv types: standard, pointer and record,

— variables: entire, referenced and field designator,

— expressions,

- statements: compound, assignment and while,

Please notice that we omit procedures and functions and will discuss only
main programs.

2.3, Description Apparatus and Semantics

2.3.1. Histories and Control Points. These are the basic notions of the de-
scription technique; the underlying intuition was explained in the introduction.
Control points are used in a program description and are introduced by the
DESCRIBER according to the assumed semantics of statements (sce below).

Proving Properties of Pascal Programs in MIZAR 2 315

Roughly speaking every statement in a program is preceded by a control point,
which is a counterpart of the instruction location in a computer.

Since each history of a program run has s resulting (and unique} state
then instead of speaking about control and data of the state we will speak
about control and data of the history. In MIZAR 2 we declare

type HISTORY

and every object of that type will be a history of g computation. For control
points we use natural numbers (standard notion in MIZAR 2). In the de-
scription technique we introduce functional notation to refer to an history (e
its resulting state) components. For a HISTORY H by CP{H) we denote the
control point of H and by NH{H) the next history of H {Pascal programs are
deterministic). In MIZAR 2 the function symbols CP and NH are introduced
in the following way:

for H being HISTORY consider CP{H) being natural;
for H{ being HISTORY consider NH{H) being HISTORY

The functions CP and NH obtain their definitions in the description of any
specific program. We will use two standard control points named START and
FINISH which obtain their definition in the description of a specific program.
We also use a constant FH for denoting the mitial (first) HISTORY of a
computation with the property CP(FH)=START.

2.3.2. Types. Each Pascal type - standard or defined is described as a
nonempty set. That agrees with the approach of Jensen and Wirth [3] where it
is said that each Pascal type shall be understood as a set of values, The name
of the introduced set is the same as the name of a type which ocurred in a
program, except Yor standard types. For instance the standard Pascal type
integer will be described by a set integers — the set of integer values which is in
MIZAR 2 a standard object. The technigue of describing user defined types is
explained in Sect. 4.

For a given set 4 in the description we consider a set of poinfers to
{adresses of) the elements of 4 and this set is denoted by PTR{A4) For
instance, a Pascal variable of type A is described as an element of PTR{A}
Due to a certain MIZAR 2 restriction, for anv set 4 we discern a unigue
NIL{A} being an element of PTR{A4). Note that in Pascal the value ail is
compatible with any pointer type.

2.3.3. Variables. To each program variable of type 4 we assign an element of
PTR{A) as its meaning. Declared Pascal variables are described with the help
of the VAR function having two arguments, the first being a natural number
serves as a variable counter and the second defines the type of the variable
The arity and type of the function VAR are declared in MIZAR 2 as follows:

for N being natural, A being nonempty
consider VAR(N, A) being element of PTR{A)

316 P. Rudnicki and W. Drabent

For instance the declaration of variables

var X, y,z: integer
is described as

take X = VAR(I, integers)

take Y= VAR(Z, integers)

take Z=VAR(3, integers). _
The introduced objects X, Y and Z are — according to the declaration of VAR
— glements of PTR{integers). We assume that if X =VAR(N, 4), Y=VAR(M,B)
and N¢{ YM then X ¢ >Y. This means that two declared variables with different
variable counters are different, i.e. they denote different addresses.

2.3.4. VALUATIONS (of addresses). Since we will consider different stages of |
the program run we introduce a valuation function VAL which for an element |
V of PTR(A) and an HISTORY H gives an element of A - a value stored |
under the address ¥V in H. The addresses {elements of a certain PTR{A)}) we
obtain e.g. from the descriptions of declared variables. In MIZAR 2 the VAL
function is introduced in this way:
definition
let A be nonempty, H be HISTORY, C be element of A,
V be element of PTR{A),;
pred C=VAL{V, H}
end .
Obviously what is defined above is only the “shape” of the VAL function and |
not the function itself. The function denoted by VAL is defined in any specific
program description; actually this i3 not a one function but a family of
functions since VAL contains a hidden parameter, namely that denoted by 4
above. "

2.3.5. Expressions. Fach Pascal expression has a type. Pascal expressions of
type A we describe using the declared in MIZAR 2 type: 5=

EXPRESSION of A

where A4 is a set describing a certain Pascal type A.
If E is an EXPRESSION of A then the value of E in an HISTORY H we
denote by E. H which denotes an element of A.
If E is an EXPRESSION of PTR(A) then by 1 E we mean the dereferenced |
expression E, ie. an EXPRESSION of 4. :
The following formula connects the expression valoation with the pre- |
viously introduced function VAL: '

(1E). H=VAL(E. H, H)

where E is an EXPRESSION of PTR(A) for some A. :

Pascal expressions are built from variables and constants by means of |
operators. In the language Pascal the constant {or variable) — say C — outside |
of context is indistinguishable from the simple expression built from C. This is

Proving Properties of Pascal Programs in MIZAR 2 317

not the case in our description technigue. We will make a syntactic distinction
between a constant or a variable and an expression constructed from 1t If C is
an element of A (a value of type A) by . C we denote the EXPRESSION of 4
built from C. E.g. +3 is an element of integers while . +3 15 an EXPRESSION
of integers; X 15 an element of PTR{inregers) and . X i1s an EXPRESSION of
PTR{integers).

The difference between the expressions on the left hand side and right hand
side of an assignment statement is immediately mirrored in the description of
these expressions. E.g. for the following assignment (for the declarations of x
and y see above):

xi=y
the left hand side expression is described as . X since x denotes here a certain
address where an integer value may be stored. Notice that . X is an EX-
PRESSION of PTR(integers). The right hand side expression is described as
T.Y since in that context y denotes an integer value and {.Y is an EX-
PRESSION of integers. The value of y at a certain stage of the program run,
ie inan HISTORY H, is described by (1. Y). H.

We accept the obvious fact that expressions built of constants always have
the same value, 1e. (C} . H=C.

in the description technigue we will use expression forming binary oper-
ators + and s defined for EXPRESSION of integers and resulting in an
EXPRESSION of integers.

The Pascal boolean expression is described as an EXPRESSION of
INTEGERS. We use +1 for true and +0 for false. The only relational
operator we will use later is that of nonequality and is described by the
function NE which for El and E2 —~ each an EXPRESSION of 4, for some 4
-~ results in an EXPRESSION of integers. We assume that:

El.H<{ YE2.H implies NE(ELE2Y.H=+1
and
El . H=F2 H implies NE(EILEZy. H= +10.

2.3.6. Statements — Description and Semantics. In this paragraph we show how
Pascal statements are described to form axioms about a program. Any specific
Pascal statement is described by a special predicate. The meaning of the
predicate is formally defined and constitutes the assumed semantics of the
statement. The meaning of the compound statement and the meaning of semi-
colon in the body of a Pascal program are expressed immediately in a de-
scription of the program obtained from the DESCRIBER.

To define semantics of a statement we have to characterize the transition
from a history of a computation to its next history. Thus for any statement we
have to define:

- the next control point,
— what has been changed by {or has remained unchanged after) the execution
of the statement in the memory.

318 P, Bodoicki and W _Dreabent

The Pascal assignment statement appearing at a control goint 0l 4 srosram

is described by the following predicate:
[LSE,RSE] is ASSIGNMENT of N
where
LSE —is a description of the left hand side expression,
RSE ~is a description of the right hand side expression
N ~is a natural number identifving the control peint in a program where
the assignment statement occurred.

For instance the assignment x:=y occurring at the conirod point 3 of a
program is described as:

[LX.1.Y]is ASSIGNMENT of 3

The meaning of the above predicate we define axiomatically and express in
MIZAR 2 as follows (st for satisfving):

for 4 being nonempty, Vbeing (EXPRESSION of PTR{A)),
E being (EXPRESSION of A), K being natural,
H being HISTORY
st [V,E]is ASSIGNMENT of K & CP(H)=K
holds
CPINH(H)y=K+1 &
VAI{LV.H NHH)=E.H &
{for B being nonempty, V' being EXPRESSION of PTRE(B)
st VIH is INDEPENDENT of V.H
holds VAL(VIH, NH(H}y= VALV H, Hj).

In the axiom the first conjunct in the quantifier scope lic alier holds)
defines the way of inserting control points after an assignment statement. We
remind that in case of a specific program the control points are inseried by the
DESCRIBER.

The second conjunct cxpresses what has been changed ‘in the memory {data
of the HISTORY H) by the execution of the assignment stafemient Thus a part
of the data of NH{H) is defined.

The third conjunct defines what in the memory has remained unchanged.
This fact is expressed with use of the predicate INDEPENBENT defined for
addresses. In general the predicate has a complex definition and we explain
here only the case of declared variables. If V== VAR(N,A), V' VARIM B} and
N{ > M then Vis INDEPENDENT of V',

Remark. Since in this approach we discuss memory locations explicitly, we
hope to treat properly also the cases of aliasing.
END of remark.

The while statement is described by the predicate WHILE[R EI M)
where:

K —-a control point in a program where the while statement occurred
El-a description of the boolean expression guarding the while loop,

Proving Properties of Pascal Programs in MIZAR 2 31y

M —an additional control point inserted alier the iterated statement to
deseribe the return jump.

The diagram below indicates the places where the control points for a while
statement are inserted:

%) while (expression) do ®*+ 1 (statement) M,

Obviously there may be other control points inserted for the iterated statement
but the way they are inserted depends only on the iterated statement - their
numbers are from the interval (K+ 1, M).

The semantics of the while statement is given in two axioms. In a separate
axiom we define the control flow:

for H being HISTORY, K. M being natural,
El being EXPRESSION of integers
st WHILE [K.EIL M}
holds
(CP(Hy=K implies
(Ef.H=+1 implies CPINH{H))=K+1) &
(Ef.H= + (¢ implies CPINH{H))=M+11 &
(CP{Hy=M implies CP(NH{H)=K)

The second axiom we assume for the while statement reflects the fact that
no changes have taken place in the memory while passing through K and M
control points:

for H being HISTORY, K, M being natural
El being EXPRESSION of integers
st WHILE [K, EIL M| & (CP{H)=K or CP(H)=M)
holds
for A being nonempty, V being element of PTR(A)
holds VALV NH{H)) = VALV, H)

2.4. Example. Consider the following factorial computing program:

program factorial {input, output};
var X, y,z: integer,
begin read (x}); y:=1; z:=0;
while z{ >x do begin z:=2z+1; yi=y=xz end;
write {y);
end.

In the further discussion we omit problems related to the program heading and
input/output statements. First, let us look how, according to the assumed
axioms and our technique, the DESCRIBER 1inserts control points:

Yar x.y, z: infeger.

begin

Oy, W zi=g;

@ while z{ >x do begin ¥ zi=z41; "™ yi=ysz ¥ end;

) end.

Below we present a part of the above program description as obtained from
the DESCRIBER.

320 P. Rudnicki and W, Drabent

take X = VAR({I, integers);

take Y =VAR(Z, integers);

take Z=VAR(3. integers);

AXSTART: START =0,

AX0: [LY,.+1]is ASSIGNMENT of 0;

AXD [LZ,.+0is ASSIGNMENT of 1

AXZ: WHILE[2,NE{(T.Z,7.X),51;

AX3: [LZ.0.Z2+.+11] is ASSIGNMENT of 3;
AX4: [LYAT.Yx1.21] is ASSIGNMENT of 4;
AXFINISH: FINISH=56

The above description constitutes only a part of the axiomatics of our
sample program. To obtain the full axiomatics and thus form an appropriate
MIZAR 2 environment we have to add:

— declarations or definitions of the used notions,

- the axioms assumed about instruction meaning,

- axiomatically formed properties of used data types.

How this is done and how the desired properties of programs are proven is
presented in Sects. 3 and 4.

One could argue at this point that our method consists in transforming
Pascal programs into gote programs. That is true, the DESCRIBER actually
simulates the work of a compiler {in our case of the Pascal 1900 compiler, cf.
Welsh {81) thus one may say we describe a Pascal program from the point of
view of the code gencrated by the compiler. The second reason why the
program description has this form s that Pascal, or at least its implementation,
does not forbid destroying, by gote statements, all structure of the so called
structural control statements.

3. Example of Factorial Computing Program

The program with inserted control points together with a part of its de-
scription obtained from the DESCRIBER was presented in the previous sec-
tion. In that program there appeared only one Pascal (standard} tvpe, namely
integer. This type is described by MIZAR 2 (standard) type, namely integers.
To go further with investigation of that program we have to enrich MIZAR 2
environment with some properties of integers which we expect to use later.
Thus we add a scheme of induction and we declare the function FACTORIAL
axiomatically characterizing its properties. In MIZAR 2 it is expressed as
follows:
scheme INDUCTION:
pred P
for N being element of integers st+) < = N heolds P{ N
sinee
CONDI: PL4+0;
COND2: for N being element of integers st +0< =N & P[N]
holds PN +{+ 1]
end;

Proving Properties of Pascal Programs in MIZAR 2 321

for N being element of integers consider FACTORIAL(N) being element of
integers,

ARI: FACTORIAL{+O)y=1;

AR4: for N being element of integers st+ 0 < =N holds
FACTORIAL(N)*(N +(+1))=FACTORIAL(N +(+ 1))

Actually, the environment must also be augmented by some other arithmetical
facts {characteristic for addition and multiplication} as MIZAR 2 knows noth-
ing about arithmetics; they are not quoted here.

At this moment we have completed the environment part of the MIZAR 2
text and we are ready to formulate and prove certain of its properties. For the
sake of simplicity we omit the problem of run time errors assuming that we
have integer numbers implemented with no restriction to their range. We prove
the following property of our program:

+0<=VALX, FH) implies
{ex H being HISTORY st
CP{H)=FINISH & VALY Hy=FACTORIALVAL{X FII))

This formula expresses the fact that for each run of our program if the value of
x in the first {initial} history — where each program run starts — 15 greater or
equal to 0 then there exists a history H such that its control point is FINISH
and the value of y is equal to the factorial of the initial value of x. In the other
words we prove for that program the stop property and its input-output
characteristics. Observe that we can also formulate {(and prove} formulas in-
volving histories at more than two control poiuts. It allows us to deal with
properties of the whole computational process, not only its initial and final
states.

The above properties of the program are proved with the use of the
following lemma:

for N being clement of integers st +0< =N holds
N< =VAILX, FH) implies
{ex H being HISTORY
st CPUH) =2 & VAL(Z. H)=N &
VAL(Y. Hy=FACTORIAL(NY)

The lemma follows from the scheme of induction and the inductive assump-
tions named FIRSTCONDITION and SECONDPCONDITION which should
subsequently be proved. The latter actually corresponds to the loop invariant.

FIRSTCONDITION:
+0< =VAL{X, FH) implies
{ex H being HISTORY st CP{HY=2 & VAI{Z Hi=+0 &
VALY Hy=FACTORIAL{+0)).

The proof is immediate by considering the two first instructions of the pro-
gram and ARJ.

322 P. Rudnicki and W. Drabent

SECONDCONDITION:
for N being element of integers st +0< =N &
(N<=VAL(X, FH) implies
{ex H being HISTORY st CP(H)=2 & VAL(Z H)=N &
VALY, Hi=FACTORIAL{(NW)
holds
N+{+ < =VAL{X, FH) implies
{ex H' being HISTORY st CPIH) =2 & VALIZ Hy=N+{(+ 11 &
‘ VALY, HY=FACTORIAL(N +{+ 1.

The proof of this formula we obtain easily by one pass through the while body.

A proof of the desired properties of this program was recorded in full in
MIZAR 2 and its correctness was checked on the ICL 1900 implementation of
MIZAR 2 system. The entire text as presented to the machine consisted of 300
lines in which the notation introduction and axiomatics occupied 144 lines.
These numbers seem to be exceedingly high and some effort was undertaken to
reduce the text volume. Some limitations of the checking abilities of the
MIZAR 2 implementation had substantial influence on the text size; we are
not going to discuss them here.

We focus the discussion on the general aspects of the description technique
and on the description of the program. The DESCRIBER is now in a very
carly stage of development and its operation results in description like the
above. Let us call the style of the description the Burstall stvle since it is very
similar to what Burstall {17 proposed. Winkowski [9] uses a slightly different
approach. Instead of describing one instruction by one predicate he character-
izes an instruction by the definitional expansion of all axioms concerning the
predicate in a form proper for the specific instruction. At the first glance this
offers only the increase of description volume and adds no power. That is true
but observe that in doing so we eliminate e.g. all expression descriptions {rom
our considerations.

Using the Winkowski style we may better simulate the actual compiler
work while interpreting a program in the predicate calculus. And we may hope
to benelit much from it, namely we may have a possibility to better reflect the
specific features of a particular program. Let us try to prepare the Winkowski
style description of the factorial program by hand simulation of a describer.

The declaration of variables we now describe as follows:

consider X, Y. Z being element of PTR {inregers):

AYZ: Y > Z:

AXVAL: for H being HISTORY holds VALIX . Hy=VAL(X FH)
One must agree that even a not very “clever” describer would be able (o
generate the last axiom. In fact, many real compilers make use of the program
properties hike the one above expressed by AXVAL and are able find them
automatically.

The two starting assignments of the factorial program are now described
as:

Proving Properties of Pascal Programs in MIZAR 2 323

AXOl: CPINH{(FH)=1:

AX02: VALY, NH(FHY)=+1:

AX03: VAIKZ NH{(FHN=VAL{Z FH});

AX11: CPINH(NH(FH)=2:

AX12: VAL{Z NHINH(FH = +1;

AX13: VALY NHINH(FHY))= +1;
Observe that using the Winkowski style we may, directly in the description,
express the fact that the first two Instructions are performed only once in every
run of the program.

Remark on the Simultaneous Assignment

Assume that in a programming language we have the simultaneous assignment.
Then the description of (y,z):=(1,0) occurring in control point § is very
simple:

AX': CPINH{(FH)=1;

AX" VALY NH(FHY) = +1;

AX": VAILZ NHFH)= +0

This is all since our program contains no other variable than y, z and x, but
the value of x is constant throughout the program run.
End of remark.

Further, let symbol H denote a HISTORY and V an clement of
PTR{integers). The while statement has a very simple description.

AX21: for H st CP(H)=2 holds
(VAL(Z, H)< > VAL(X. H) implies CP(NH(H))=3) &
(VAL(Z, H)y=VAL(X, H) implies CP(NH(H))=FINISH):
AX22: for H,V st CP(H)=2 holds VAL(V, NH(H)) = VAL(V, H)

Let us describe the last assignment in the program skipping that of control
point 3. At the control point 4 we have the instruction vi= y%z.

AX41: for H st CP(H)=4 holds CPINH{H)=2;
AX42: for H st CP{H)=4 holds
VAI{Y Y NH{HW=VAL{Y, Hyx VAL{Z, H).
AX43: for H Vst CP(H)=4 & V{ > Y holds
VAI{V, NH{H))}=VAL{V, H)

Note that thus we have eliminated the control point 3 from our consid-
erations.

The MIZAR 2 text containing the description of the factorial program in
the Winkowski style and the proofl of the same program properties as before
was more than twice shorter than the previous one — both in the description
and the proofl part. The whole of the new text is contained in the Appendix 1.
The inductive assumption labelled FIRSTCONDITION and SECONDCON-
DITION are formed there in the so called natural deduction reasonings -
they are not recorded explicitly.

324 P. Rudnicki and W. Drabent

4. Example of the List Reversing Program
We will investigate a program reversing an existing list in place. The program
{with inserted control points} is:
type lrec=record next: 7 lrec; cont: integer end;
var laux, sr, ir: Tlrec:
begin
Oy tri=nil:
(1} while sv{ >nil do

begin
(2} laux:=srT.next;
{3) srTonext:={r;
{4) IFi=S§F]
(5) sre=laux
{6} end
{77 end

In this program we assume the structural type equivalence. As previously we
omit the problems related to the program heading and input/output. The
reversing 18 done in place, 1.e. the program changes only the values of the field
next in the nodes of the list, The head of the source list is pointed to by sr at
the beginning of computations, the head of the target list is pointed to by tr at
the end of computations. We assume that the source list has the sil value in
the field nexr of its last node. The fact will later be mirrored in the assumed
induction scheme.

The case of this program is more complicated than the factorial computing
program since list is not a standard Pascal type while integer is. Initially the
Pascal record type is described as a certain nonempty set. In our case:

given LREG being nonempty.
The description of the record structure is done with use of an auxilbary
function FIELID proposed by Byliaski [27]. The function is declared as:
for A being nonempty, V being (element of PTR{A})),
N being natural, B being nonempiy
consider FIEID(A, V. N, B) being element of PTR(B)

The meaning of its arguments is as follows:

~ description of a recerd type (a set),

————— a pointer {an address) to a value of the record type,
— a natural serving as field counter,

- type of the field.

The function FIELD results in an address to a value of the field type. The
third argument of the function FIELD serves to express the independence of
memory clements. The following holds:

N > M implies FIELD{A, VN, B)is INDEPENDENT of

FIELD(A VM. B}

In order to describe fields for a specific record type variable the DE-
SCRIBER introduces subsequent auxiliary functions. For the fields of our
record type lrec the DESCRIBER introduces the functions NEXT and CONT.

Proving Properties of Pascal Programs in MIZAR 2 325

for V being elemenr of PTR{LRE(C)
take
NEXT(Vy=FIELD{LREC,V.],PTR(LREC(C},
CONT(Vy=FIELD{LREC,V,2, integers)

Note that an object denoted by NEXT(V) 18 an element of PTR{PTR{LREC)).
Note also that the nodes of lists discussed are of the type PTR(LREC). The
remainder of the description obtained for the above program is:

take LAUX = VAR(I, PTR{(LREC)};
take SR =VAR{2, PTR{LREC));
take TR = VAR, PTR{LRECY);
AXSTART: START =0;
AXO: [LTR,ONIL(LRECY] is ASSIGNMENT of 0;
AX1: WHILE [LNE(T.SR, . NIL{LRE(C)), 6],
AX2: for H being HISTORY st CP{H)=2 holds
LLAUX, {1 NEXT(].5R.H)] is ASSIGNMENT of 2
AX3: for H being HISTORY st CP{H)=3 holds
[LNEXT(O.SR.OH), T.TR] is ASSIGNMENT of 3;
AX4: [LTR T.5R1is ASSIGNMENT of 4;
AXS5: [LSRT.LAUX] is ASSIGNMENT of 5,
AXFINISH: FINISH=7
Since our program concerns lists certain axioms about lists must be added
to the discourse. Here we mention only those axioms or theorems of a list
theory which are npecessary to sclve our example. Thus we introduce the
following notions and facts:

- A parametrized type:

type LIST of A being nonempty
- A name for the empty list:

for A being nonempty consider NILI{A) being LIST of 4
- An operation for appending an element in front of a hst:

for A being nonempty, E being (element of A,
L being LIST of A
reconsider £, 1 as LIST of A4
- An axiom linking the introduced operation with the empty list:

LISTI: for A being nonempty, E being (element of A),
L being LIST of 4
holds £.L{ YNILI{A)}
- An axiom scheme for induction over lists:
scheme LISTIND;
const A being nonempty;
pred P;
for L being LIST of A holds P[L}]
since
CONDI: PINILL(A)];
CONDZ2: for E being (element of A}, L being LIST of 4
st P{L] holds P[E.L]
end

176 P. Rudnicki and W. Drabent

Note that the scheme is valid only for linear finite lists.
— An operation for adding lists of the same type: L+ L.
— By REV{L) we denote the reversed list L.
- E is MEMBER of L 1s the predicate saying that F is an element of the list
L.
- L MISSES I is a predicate saying that the lists L and I are disjoint (have
no common element).
- The property of appending the empty list:
NILE{AY+ L=L & L+ NILL{Ay=1L
~ The reverse of the empty list is empty:
REVINILI{A)=NILL{A)
~ The property of reversing a list:
REVIE. LY+ L=REVIL)+(E. L}

The above notions and facts are not sufficient to prove or even to for-
mulate any interesting property of our example. We have to add certain
axioms saying how lists are represented in program notions or — which is
equivalent — how [rom the program notions we might abstract hists. To solve
problems related to that small example we assume the following notions and
facts, mirroring programmer’s intention:
~ A function for denoting lists abstracted from the machine memory:

for V'being (element of PTR{(PTR{LREC))), H being HISTORY
consider LIST(V, Hybeing LIST of PTR(LREC)
In the subsequent axioms ¥ denotes an element of PTR{PTR{LREC), E an
element of PTR{LREC), L a LIST of PTR(LRECyand H a HISTORY.
- An axiom describing the empty list representation:
LIST{V Hy= NILI{PTR{LRECHY {#f VAL(V. Hy=NIIL{LREC(C)
An axiom about the nonempty list representation:
E.L=LIST(V,H) iff
E=VAL{VH)& L=LISTINEXT(VALV.H}}, H)
An assumption that all lists in our consideration are looplree:

not VAI(V, Hyis MEMBER of LISTINEXT(VAL{V, H}), H}

We would like to warn the reader that the axiomatics chosen for lists was
especially tailored to our example and does not pretend to be universally
applicable. The notation bailt so far allows us to formulate the program
property we are going to prove:

LISTPROGPROPERTY:

ex H being HISTORY st
CPUN=FINISH & LIST(TR, Hi=REV(LIST(SR, FH}}.
The above sentence expresses the following:

{. the stop property of the program, and

2. the fact that the list pointed to by i at the end of a program run is
actually the reversed list pointed to by sr at the start {te. in the first history
FH) of the program run.

i

i

Proving Properties of Pascal Programs in MIZAR 2 327

The theorem is finally formulated but to prove it we have to add something
to our environment. Mamely, we have to say how Pascal instructions influence
the run-time program heap, and, consequently the lists abstracted from memo-
ry. We assume the following axioms, where V and V' denote an element of
PTR{PTR(LREC), H denotes an HISTORY. K, M are natural for control
poinis, N denotes a natwral and all free variables are 10 be treated as uni-
versally quantified bound variables,

LRAX!: CP(H)=K & V=VAR(N, PTR(LREC)) &
[.V.1.V"] is ASSIGNMENT of K
implies LIST(V, NH(H) = LIST(V', H);
LRAX?2: CP(H)=K ¬ 1.V.H is MEMBER of LIST(V',H} &
[.NEXT(1.V.H),1.V']is ASSIGNMENT of K
implies LIST(NEXT(1. V. H), NH(H))=LIST(V'. H);
LRAX3: CP(H)=K ¬ 1. V. H is MEMBER of LIST(V'.H)&
LNEXT(1.V.H).,1.V']is ASSIGNMENT of K
implies LIST(V', NH(H))=LIST(V'. H};
LRAX4: CPH)=K &[.V.1.V'] is ASSIGNMENT of K &
V=VAR(N,PTR(LREC)) & V< > V'
implies LIST(V', NH(H)=LIST(V", H):
LRAX5: WHILE[K.EI, M1 & (CP(H)=K or CP(H)=M)
implies LIST(V, NH(H))=LIST(V, H)

The above axioms are sufficient for that single program. Their general for-
mulation would be quite a task if we wanted to cover all programs concerning
lists. What we have done here is a counterpart of building a verification base
for this example in the terminology of Luckham and Suzuk: [41

Now we have finally completed the preparation of notions and axioms
necessary to prove some properties of the list reversing program. The proof of
LISTPROGPROPERTY is straightforward and makes use of the following
lemma:

LOOP:
for H being HISTORY, L being (LIST of PTR{LRECY)
st CP(Hy=1&L=LIST(SR.HY& L. MISSES LIST(TR, H}
ex H being HISTORY
st CPIH =1 & VALI(SR.H)\=NILILREC &
LIST{TR, Hy=REV(LIST(SR. H)+ LIST(TR, H}

The proof of LOOP we obtain easily from LISTIND scheme proving the
inductive assumptions first. The proof of the second inductive assumption
requires the characterization of the properties of the while loop during one pass
through its body. The lemma named WHILEBODY describes this property.
WHILEBODY:
for H being HISTORY, E being {element of PTRILRE(C)),
L being LIST of PTR{LRE()
st CP(Hy=1 & E.L=LIST(SR HY&E.L MISSES LIST(TR, H)
ex H' being HISTORY
st CP(HY=1 & L=LIST(SR, H}&
LISTUTR,H)=E.LIST{TR. H) &
L MISSES LIST(TR,H"

328 P. Rudnicki and W. Drabent

Remark on Induction

Observe that due to the accepied approach to list representation we have to
use induction in a rather uncomfortable way. MNamely, while proving the
second inductive assumption we are forced o prove WHILEBODY first and
only then are we able to use the inductive hypothesis. Usually {cf. the previous
example} we work in reverse order: we make use of the induction hypothesis
first and then we prove the inductive step. In order to do so alse in this case
we would have to change lists to be identified by not only the head but also by
the last node on the list. Such an approach i used for instance by Luckham
and Suzuki [4].

A. Trybulec informed us that even in this case the straightforward appli-
cation of induction is possible if we formulate the lemma LOOP as follows:

for L, K being LIST of PTR{LREC)
st LISTISR, NH{FH)Y=REV(L)+ K
ex H being HISTORY st
CPHY=1& LIST{TR, Hy=L& LIST(SR. Hj=K

and later on we make use of the following fact:
LIST{SR, NH(FHW=REV(REV{LIST(SRONH(FHW -+ NILL{LREC)

One must admit that this s very “unnatural”™ but still works,
End of remark.

The description of the program presented so far was in the Burstall style.
We may now try to shift to the Winkowski style simulating the describer work
by hand. Here we extend the hand simulation in the comparison to the
previous case. We are not going to discard the assumed similarity between an
intended describer and a compiler. We would like the describer to prepare the
description not only in terms of control points, histories and elementary
storage changes but also in the terminology of LISTs. In this particular case it
seems 10 be easily done and not only by hand. One can agree that a describer
might prepare instantiations of axioms from LRAX! to LRAXS for any
specific instruction in the list reversing program.

We present here the description for control points ¢, 1 and 3. The whole of
the environment and proof of the desired properties is contained in Appendix
2. {The formulation of the WHILEBODY lemma is incorporated in the reason-
ing approving the SECONDSTEP necessary for induction scheme application.}
As in the case of the factorial computing program we express the notion of
memory locations independence by means of the nonequality relation which
entirely suffices in both cases, The control point START, here equal to 0, is
eliminated and we use FH, the first history, which is always controlled by the
START control point. Symbol V will denote an element of PTR{PTR{LRECY)
and H an HISTORY.

AX01: CPINH{FH)=1;

AXO2: VAL{TR, NHIFH)=NILILRECY;

AX03: for Vst VS TR holds VALV NH(FHY = VALV, FH);
AXO04: for Vst V{ > TR holds LIST(V, NH(FH)=LIST(V,FHY;

The above AX04 axiom is an instantiation of LRAX4.

Proving Properties of Pascal Programs in MIZAR 2 329

AX11: for H st CP{H)=1 holds
(VAL(SR, Hy{ > NIL{LREC) implies CPINH{(H))=1} &
(VALISR, Hy=NII{LREC) implies CP(NH{H}}=FINISH,
AXI12: Yor V. H st CP{H)==1 holds VAL{V. NH{H))=VAL{V, H}:
AXI13: for V,H st CP{H)=1 holds LIST(V, NH{H)=LIST{(V. H};

The last axiom is an instantiation of LRAXS.

AX31: for H st CP{H)=23 holds CPINH(H)}=4;
AX32: for H st CP{H)=23 holds .
VALINEXT(VAL(SR. H), NH{H))= VAL{(TR, H);
AX33: for VH st CP(H)=3 & V{ YNEXT{VAL(SR, H}} holds
VALV NH{Hy=VALIV, H);
AX34: for H st CPH)=3&
not VAL(SR, H) is MEMBER of LIST{TR, H)
holds LISTINEXT{(VAL{SR, HY), NH{(H)=LIST(TR, H):
AX35: for H Vst CPIHI=3&
not VAL(SR, HYy is MEMBER of LIST{V, H}
holds LIST(V, NH{H)=LIST(V, H)

Axioms AX34 and AX35 instantiations of LRAXZ and LRAX3 respectively.

Remark on Simultanecus Assignment

In the previous example we considered how much we would beneflit from the
simultancous assignment instruction. In this case the possible application of
such an instruction in the form:

(sr T.next, tr, sey={tr, 57, 5v T next)

eliminates the auxiliary variable laux but does not otherwise help. A straight-
forward description of the instruction, similarly as in the previous case,
gives inconsistent instantiations of list representation axioms. To describe the
simultaneous assignment properly we have to do it in the same way as in the
case of a single assignment, otherwise we would have to change our approach
essentially.

End of remark.

The shift from the Burstall to the Winkowski style also in this case resulted
in a considerable abridgement of the MIZAR 2 text describing the program
theory and containing the proof of the same property. In the former case it
numbered 540 lines as compared with 250 lines in the latter. Obvicusly, even
this second number seems too large to consider practical proving of bigger
programs exactly in this manner. But we have to take into account that half of
those texts {in lines) was or was assumed to be produced automatically by a
describer or taken from a library. Please observe that the main reason for the
proofs being so long are the abilities of the implemented MIZAR 2 checker,
which are rather modest.

The factorial program example is comparatively much simpler than the list
example so we devote more attention to the latter. We have chosen a list

330 P. Rudnicki and W. Drabent

example to give an idea of how to cope with user-defined data types in the
presented approach. Our proposal 1s close to that of Luckham and Suzuks [4]
In that paper a verification approach is used, le. the proof is done by the
machine while in our case the proof s prepared by man. What we have called
an axiomatization of data structures representation, there is called a basis for
verification. Luckham and Suzuki {4] present a complete system for proving
programs with pointers, arrays and records in a uniform way while here we
have only presented some preliminary ideas.

One of the approaches to abstract data types is delivering an implementa-
tion of the abstract data type in a programming language (or encapsulating the
implementation in a module). That solution really makes reasoning about
programs very easy and the approach presented here is not tailored for this
aim. But in any case one must first prove the implementation to be correct.
For this purpose we see the approach as extremely suitable. Observe, that our
example cannot be expressed in any implementation of the abstract data type
fist unless there exists a function in the implementation which exactly performs
the in-place reversal. We may easily write and prove a program to obtain a list
reversed but not in the place of the source list, of. Salwicki [6].

5. A bit of Dessert
The list reversing program is very often used by programmers, which incloded
the authors. It is usually understood that the source list is a nil ending list; the
program reverses it as proven. The work on proving the program has given us
a new motive to prove programs at all. This is: while proving a program
property we have a chance to observe what the program can actually do.
While proving the list reversing program we have realized that it processes
also cyclic lists, terminates and results in changing their orientation: but that is
not proven yet. So we have:

1. For a hnear hist
Fig |
we obtain
Fig. 2.
2. For a cyclic list
Fig. 3
we obtain
Fig. 4.
3. For a cyclic list with a “stem”
Fig. 5.
the program also terminates. and in this case we obtain
Fig. 6.

Of the programmers known to us and using that program none was conscious
of this fact.

Proving Properties of Pascal Programs in MIZAR 2 331

Acknowledgements. We are particularly indebted to Dr. Al Trybulec for his inspiration 1o write this
paper and for a lot of helpful comments. Prof. J. Winkowski and Prof. A, Blikle helped us very
much o revise a previous version of the text,

Reference

. Burstall, R.ML: Formal description of program structure and semantics in first order logic,
Machine Intelligence 5, 79-98 {1%‘))
. Byliniski, C.: Natural semantics of Pascal. (Unpublished report in Polish, [CS PAS. 1981)
Cdensen, K., Wirth, N.o PASCAL user manual and report. Berlin-Heidelberg-New York:
Springer 1975
4. Luckham, D.C., Suzuki, N.o Verification of array, record and pointer operations in Pascal.
ACM Trans. Progr. Lang. Syst. 1, 226-244 (1979}
5. Oryszezyszyn, H.o Description of Pascal programs. {Unpublished report in Polish, 1CS PAS,
1981)
6. Salwicki, A.: On the algorithmic theory of stacks. Fundamenta Informaticae, vol 11 pp. 311~
331 {1980y
7. Trybulee, AL, Bylifski, C., Oryszezyszyn, H., Rudnicki, P.o MIZAR processor for ICL 1900,
listing of Pascal program. 1981
8 Welsh, J.: Pascal for ICL 1904, listing of the compiler, Belfast 1977
9. Winkowski. 1.0 A natnral method of proving properties of programs. Fundamenta [nformaticae
1, 3349 1977y
10, Winkowski, J.. Towards an understanding of computer simulation. Fundamenta Infoermaticae
1, 277-289 (1978}

b b

Received August 24, 1983 /September 4, 1984

Comment on Appendices

The first {marked with dashes) part of a MIZAR 2 text is called an environment and contains
definitions and axioms. The lines following the heading “Program description” are presumed to be
generated by a describer. The lines following the heading *Description techunology’ are prepared
once and by hand, and later on arc appended (possibly in parts} to a particular problem. The
fragments of environments pertinent to a particular domain, in our case to arithmetic and list
theory, are to be prepared by hand (and may be used in many proofs). The actual proof follows the
symbol BEGIN and is done by hand. The part of a line starting with = = constitutes an informal
commentary. The linal THANKS 0.K. is the checker signal conlirming correctness of the proof.

