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Summary. First we give an implementation in Mizar [2] basic important
definitions of stochastic finance, i.e. filtration ([9], pp. 183 and 185), adapted
stochastic process ([9], p. 185) and predictable stochastic process ([6], p. 224).
Second we give some concrete formalization and verification to real world exam-
ples.

In article [8] we started to define random variables for a similar presentation
to the book [6]. Here we continue this study. Next we define the stochastic process.
For further definitions based on stochastic process we implement the definition
of filtration.

To get a better understanding we give a real world example and connect the
statements to the theorems. Other similar examples are given in [10], pp. 143–
159 and in [12], pp. 110–124. First we introduce sets which give informations
referring to today (Ωnow, Def.6), tomorrow (Ωfut1 , Def.7) and the day after
tomorrow (Ωfut2 , Def.8). We give an overview for some events in the σ-algebras
Ωnow,Ωfut1 and Ωfut2, see theorems (22) and (23).

The given events are necessary for creating our next functions. The imple-
mentations take the form of: Ωnow ⊂ Ωfut1 ⊂ Ωfut2 see theorem (24). This tells
us growing informations from now to the future 1=now, 2=tomorrow, 3=the day
after tomorrow.

We install functions f : {1, 2, 3, 4} → R as following:
f1 : x→ 100, ∀x ∈ dom f , see theorem (36),
f2 : x→ 80, for x = 1 or x = 2 and
f2 : x→ 120, for x = 3 or x = 4, see theorem (37),
f3 : x→ 60, for x = 1, f3 : x→ 80, for x = 2 and
f3 : x→ 100, for x = 3, f3 : x→ 120, for x = 4 see theorem (38).
These functions are real random variable: f1 over Ωnow, f2 over Ωfut1, f3

over Ωfut2, see theorems (46), (43) and (40). We can prove that these functions
can be used for giving an example for an adapted stochastic process. See theorem
(49).
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We want to give an interpretation to these functions: suppose you have an
equity A which has now (= w1) the value 100. Tomorrow A changes depending
which scenario occurs − e.g. another marketing strategy. In scenario 1 (= w11)
it has the value 80, in scenario 2 (= w12) it has the value 120. The day after
tomorrow A changes again. In scenario 1 (= w111) it has the value 60, in scenario
2 (= w112) the value 80, in scenario 3 (= w121) the value 100 and in scenario 4
(= w122) it has the value 120. For a visualization refer to the tree:

Now tomorrow the day after tomorrow

w111 = {1}
w11 = {1, 2} <

w112 = {2}
w1 = {1, 2, 3, 4} <

w121 = {3}
w12 = {3, 4} <

w122 = {4}
The sets w1,w11,w12,w111,w112,w121,w122 which are subsets of {1, 2, 3, 4}, see

(22), tell us which market scenario occurs. The functions tell us the values to the
relevant market scenario:

Now tomorrow the day after tomorrow

f3(wi) = 60, wi in w111
f2(wi) = 80 <

wi in w11 f3(wi) = 80, wi in w112
f1(wi) = 100 <

wi in w1 f3(wi) = 100, wi in w121
f2(wi) = 120 <

wi in w12 f3(wi) = 120, wi in w122

For a better understanding of the definition of the random variable and the
relation to the functions refer to [7], p. 20. For the proof of certain sets as σ-fields
refer to [7], pp. 10–11 and [9], pp. 1–2.

This article is the next step to the arbitrage opportunity. If you use for exam-
ple a simple probability measure, refer, for example to literature [3], pp. 28–34,
[6], p. 6 and p. 232 you can calculate whether an arbitrage exists or not. Note,
that the example given in literature [3] needs 8 instead of 4 informations as in
our model. If we want to code the first 3 given time points into our model we
would have the following graph, see theorems (47), (44) and (41):

Now tomorrow the day after tomorrow

f3(wi) = 180, wi in w111
f2(wi) = 150 <

wi in w11 f3(wi) = 120, wi in w112
f1(wi) = 125 <

wi in w1 f3(wi) = 120, wi in w121
f2(wi) = 100 <

wi in w12 f3(wi) = 80, wi in w122

The function for the “Call-Option” is given in literature [3], p. 28. The func-
tion is realized in Def.5. As a background, more examples for using the definition
of filtration are given in [9], pp. 185–188.
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1. Preliminaries

Now we state the proposition:

(1) Let us consider objects a, b. If a 6= b, then {a} ⊂ {a, b}.
Let I be a non empty subset of N. Observe that I(∈ 2R) is non empty.
Let us consider an element T of N. Now we state the propositions:

(2) {w, where w is an element of N : w > 0 and w ¬ T} ⊆ {w, where w is
an element of N : w ¬ T}.

(3) {w, where w is an element of N : w ¬ T} is a non empty subset of N.

(4) If T > 0, then {w, where w is an element of N : w > 0 and w ¬ T} is
a non empty subset of N.
Proof: {w, where w is an element of N : w > 0 and w ¬ T} is a subset
of N. 1 > 0 and 1 ¬ T by [1, (24)]. �

Now we state the proposition:

(5) Let us consider a non empty set Ω. Then Ω 7−→ 1 is a function from Ω
into R.

2. Special Random Variables

Now we state the proposition:

(6) Let us consider a natural number d, a sequence ϕ of real numbers, a non
empty set Ω, a σ-field F of subsets of Ω, a non empty set X, a sequence
G of X, and an element w of Ω. Then {the portfolio value for future
extension of d, ϕ, F , G and w} is an event of the Borel sets.

Let d be a natural number, ϕ be a sequence of real numbers, Ω be a non
empty set, F be a σ-field of subsets of Ω, X be a non empty set, G be a sequence
ofX, and w be an element of Ω. Note that the portfolio value for future extension
of d, ϕ, F , G and w yields an element of R. The RV-portfolio value for future
extension of ϕ, F , G and d yielding a function from Ω into R is defined by

(Def. 1) for every element w of Ω, it(w) = the portfolio value for future extension
of d, ϕ, F , G and w.

http://zbmath.org/classification/?q=cc:60G05
http://zbmath.org/classification/?q=cc:03B35
http://fm.mizar.org/miz/finance3.miz
http://ftp.mizar.org/
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Let us observe that the RV-portfolio value for future extension of ϕ, F , G
and d yields a random variable of F and the Borel sets. Let w be an element
of Ω. Let us note that the portfolio value for future of d, ϕ, F , G and w yields
a real number and is defined by the term

(Def. 2) (
∑κ
α=0((the elements of the random variables for the future elements of

portfolio value of (ϕ,F ,G,w)) ↑ 1)(α))κ∈N(d− 1).

Let us note that the portfolio value for future of d, ϕ, F , G and w yields
an element of R. The RV-portfolio value for future of ϕ, F , G and d yielding
a function from Ω into R is defined by

(Def. 3) for every element w of Ω, it(w) = the portfolio value for future of d+ 1,
ϕ, F , G and w.

Let us note that the RV-portfolio value for future of ϕ, F , G and d yields
a random variable of F and the Borel sets. Now we state the propositions:

(7) Let us consider a natural number d, a sequence ϕ of real numbers, a non
empty set Ω, a σ-field F of subsets of Ω, a non empty set X, a sequence
G of X, and an element w of Ω. Then

(i) the portfolio value for future of d+ 1, ϕ, F , G and

w = (the RV-portfolio value for future of ϕ, F , G and d)(w), and

(ii) {the portfolio value for future of d + 1, ϕ, F , G and w} is an event
of the Borel sets.

(8) Let us consider a non empty set Ω, a σ-field F of subsets of Ω, a non
empty set X, a sequence G of X, a sequence ϕ of real numbers, and
a natural number d. Then the RV-portfolio value for future extension of
ϕ, F , G and d + 1 = (the RV-portfolio value for future of ϕ, F , G and
d) + (the random variables for the future elements of portfolio value of
(ϕ,F ,G,0)).

(9) Let us consider non empty sets Ω, Ω2, a σ-field Σ of subsets of Ω, a σ-
field Σ2 of subsets of Ω2, and an element s of Ω2. Then Ω 7−→ s is random
variable on Σ and Σ2.

(10) Let us consider a non empty set Ω, a σ-field Σ of subsets of Ω, a random
variable RV of Σ and the Borel sets, and an element K of R. Then RV −
(Ω 7−→ K) is a random variable of Σ and the Borel sets. The theorem is
a consequence of (9).

Let Ω be a non empty set, RV be a function from Ω into R, and w be
an element of Ω. The functor Set-Call-Option(RV, w) yielding an element of R
is defined by the term

(Def. 4)

{
RV(w), if RV(w)  0,
0, otherwise.
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Let Σ be a σ-field of subsets of Ω, RV be a random variable of Σ and
the Borel sets, and K be an element of R. The Call-Option on RV and K

yielding a function from Ω into R is defined by

(Def. 5) for every element w of Ω, if (RV − (Ω 7−→ K))(w)  0, then it(w) =
(RV − (Ω 7−→ K))(w) and if (RV − (Ω 7−→ K))(w) < 0, then it(w) = 0.

3. Special σ-Fields

Let us consider a sequence A1 of subsets of {1, 2, 3, 4} and a real number w.
Now we state the propositions:

(11) Suppose w = 1 or w = 3. Then suppose for every natural number n,
A1(n) = ∅ or A1(n) = {1, 2} or A1(n) = {3, 4} or A1(n) = {1, 2, 3, 4}.
Then {w} 6= IntersectionA1.

(12) Suppose w = 2 or w = 4. Then suppose for every natural number n,
A1(n) = ∅ or A1(n) = {1, 2} or A1(n) = {3, 4} or A1(n) = {1, 2, 3, 4}.
Then {w} 6= IntersectionA1.

Now we state the propositions:

(13) Let us consider sets M , A1, A2. Suppose M = {∅, {1, 2, 3, 4}} and A1,
A2 ∈M . Then A1 ∩A2 ∈M .

(14) Let us consider a sequence A1 of subsets of {1, 2, 3, 4}. Suppose for every
natural number n and for every natural number k, A1(n)∩A1(k) 6= ∅ and
rngA1 ⊆ {∅, {1, 2}, {3, 4}, {1, 2, 3, 4}}. Then

(i) IntersectionA1 = ∅, or

(ii) IntersectionA1 = {1, 2}, or

(iii) IntersectionA1 = {3, 4}, or

(iv) IntersectionA1 = {1, 2, 3, 4}.
Proof: For every natural number n, A1(n) ∈ {∅, {1, 2}, {3, 4}, {1, 2, 3, 4}}
by [1, (20)], [4, (3)]. For every natural number n, A1(n) = ∅ or A1(n) =
{1, 2} or A1(n) = {3, 4} or A1(n) = {1, 2, 3, 4}. �

Let us consider a sequence A1 of subsets of {1, 2, 3, 4} and a set M . Now we
state the propositions:

(15) Suppose M = {∅, {1, 2}, {3, 4}, {1, 2, 3, 4}} and
IntersectionA1 = {1, 2, 3, 4}. Then IntersectionA1 ∈M .

(16) Suppose M = {∅, {1, 2}, {3, 4}, {1, 2, 3, 4}} and IntersectionA1 = {3, 4}.
Then IntersectionA1 ∈M .

(17) Suppose M = {∅, {1, 2}, {3, 4}, {1, 2, 3, 4}} and IntersectionA1 = {1, 2}.
Then IntersectionA1 ∈M .
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(18) Suppose M = {∅, {1, 2}, {3, 4}, {1, 2, 3, 4}} and IntersectionA1 = ∅.
Then IntersectionA1 ∈M .

Now we state the propositions:

(19) Let us consider a set M , and a sequence A1 of subsets of {1, 2, 3, 4}.
Suppose rngA1 ⊆M and M = {∅, {1, 2}, {3, 4}, {1, 2, 3, 4}}.
Then IntersectionA1 ∈M .
Proof: IntersectionA1 ∈ {∅, {1, 2}, {3, 4}, {1, 2, 3, 4}} by [11, (13)], (14).
�

(20) Let us consider sets M , M1, and a sequence A1 of subsets of M1. Sup-
pose M1 = {1, 2, 3, 4} and rngA1 ⊆ M and M = {∅, {1, 2, 3, 4}}. If
IntersectionA1 6= ∅, then IntersectionA1 ∈M .
Proof: For every natural number n, A1(n) = ∅ or A1(n) = {1, 2, 3, 4} by
[1, (20)], [4, (3)]. If there exists a natural number n such that A1(n) = ∅,
then IntersectionA1 = ∅ by [11, (13)]. IntersectionA1 = {1, 2, 3, 4} by [11,
(13)]. �

(21) Let us consider sets M , M1, and a sequence A1 of subsets of M1. Suppose
M1 = {1, 2, 3, 4} and rngA1 ⊆M andM = {∅, {1, 2, 3, 4}}. Let us consider
a natural number k1, and a natural number k2. Then A1(k1)∩A1(k2) ∈M .
Proof: k1 ∈ domA1 by [1, (20)]. k2 ∈ domA1 by [1, (20)]. A1(k1) ∩
A1(k2) ∈M . �

The functor Ωnow yielding a σ-field of subsets of {1, 2, 3, 4} is defined by the
term

(Def. 6) {∅, {1, 2, 3, 4}}.
The functor Ωfut1 yielding a σ-field of subsets of {1, 2, 3, 4} is defined by the

term

(Def. 7) {∅, {1, 2}, {3, 4}, {1, 2, 3, 4}}.
The functor Ωfut2 yielding a σ-field of subsets of {1, 2, 3, 4} is defined by the

term

(Def. 8) 2{1,2,3,4}.

Let us consider a set Ω.
Let us assume that Ω = {1, 2, 3, 4}. Now we state the propositions:

(22) (i) {1} ⊆ Ω, and

(ii) {2} ⊆ Ω, and

(iii) {3} ⊆ Ω, and

(iv) {4} ⊆ Ω, and

(v) {1, 2} ⊆ Ω, and

(vi) {3, 4} ⊆ Ω, and
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(vii) ∅ ⊆ Ω ⊆ Ω.

(23) (i) Ω, ∅ ∈ Ωnow, and

(ii) {1, 2}, {3, 4}, Ω, ∅ ∈ Ωfut1, and

(iii) Ω, ∅, {1}, {2}, {3}, {4} ∈ Ωfut2.

Now we state the proposition:

(24) Ωnow ⊂ Ωfut1 ⊂ Ωfut2.

4. Construction of Filtration and Examples

Now we state the propositions:

(25) There exists a non empty set Ω and there exist σ-fields F1, F2, F3 of
subsets of Ω such that F1 ⊂ F2 ⊂ F3.

(26) There exist non empty sets Ω1, Ω2, Ω3, Ω4 such that

(i) Ω1 ⊂ Ω2 ⊂ Ω3 ⊂ Ω4, and

(ii) there exists a σ-field F1 of subsets of Ω1 and there exists a σ-field F2

of subsets of Ω2 and there exists a σ-field F3 of subsets of Ω3 and there
exists a σ-field F4 of subsets of Ω4 such that F1 ⊆ F2 ⊆ F3 ⊆ F4.

Let I, Ω be non empty sets, Σ be a σ-field of subsets of Ω, M be a many
sorted σ-field over I and Σ, and i be an element of I. The functorMσ -field(M, i)
yielding a σ-field of subsets of Ω is defined by the term

(Def. 9) M(i).

Let Ω be a non empty set and I be a non empty subset of R.
A filtration of I and Σ is a many sorted σ-field over I and Σ and is defined

by

(Def. 10) for every elements s, t of I such that s ¬ t holds it(s) is a subset of it(t)
and for every element t of I, it(t) ⊆ Σ.

Let F be a filtration of I and Σ and i be an element of I. The i-EF of F
yielding a σ-field of subsets of Ω is defined by the term

(Def. 11) F (i).

Let k be an element of {1, 2, 3}. The functor Select12-σ-field(k) yielding
a subset of 2{1,2,3,4} is defined by the term

(Def. 12)

{
Ωnow, if k = 1,
Ωfut1, otherwise.

The functor Select123-σ-field(k) yielding a subset of 2{1,2,3,4} is defined by
the term
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(Def. 13)

{
Select12-σ-field(k), if k ¬ 2,
Ωfut2, otherwise.

Now we state the propositions:

(27) Let us consider a σ-field Σ of subsets of {1, 2, 3, 4}, and a set I. Suppose
I = {1, 2, 3} and Σ = 2{1,2,3,4}. Then there exists a many sorted σ-field M
over I and Σ such that

(i) M(1) = Ωnow, and

(ii) M(2) = Ωfut1, and

(iii) M(3) = Ωfut2.

Proof: Define U(element of {1, 2, 3}) = Select123-σ-field($1). Consider f4

being a function from {1, 2, 3} into 22{1,2,3,4} such that for every element d
of {1, 2, 3}, f4(d) = U(d) from [5, Sch. 4]. For every set i such that i ∈ I
holds f4(i) is a σ-field of subsets of {1, 2, 3, 4}. �

(28) Let us consider a non empty set Ω, a σ-field Σ of subsets of Ω, and
a non empty subset I of R. Suppose I = {1, 2, 3} and Σ = 2{1,2,3,4} and
Ω = {1, 2, 3, 4}. Then there exists a many sorted σ-field M over I and Σ
such that

(i) M(1) = Ωnow, and

(ii) M(2) = Ωfut1, and

(iii) M(3) = Ωfut2, and

(iv) M is a filtration of I and Σ.

The theorem is a consequence of (27).

(29) Let us consider a non empty set Ω, a σ-field Σ of subsets of Ω, and
a σ-field Σ2 of subsets of {1}. Suppose Ω = {1, 2, 3, 4}. Then there exists
a function X1 from Ω into {1} such that X1 is random variable of Ωnow

and Σ2, random variable of Ωfut1 and Σ2, and random variable of Ωfut2

and Σ2.

(30) Let us consider a non empty set Ω, a σ-field Σ of subsets of Ω, and
a non empty subset I of R. Suppose I = {1, 2, 3} and Σ = 2{1,2,3,4} and
Ω = {1, 2, 3, 4}. Then there exists a many sorted σ-field M over I and Σ
such that

(i) M(1) = Ωnow, and

(ii) M(2) = Ωfut1, and

(iii) M(3) = Ωfut2, and

(iv) M is a filtration of I and Σ.

The theorem is a consequence of (27).
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(31) There exist non empty sets Ω, Ω2 and there exists a σ-field Σ of subsets
of Ω and there exists a σ-field Σ2 of subsets of Ω2 and there exists a non
empty subset I of R and there exists a many sorted σ-field Q over I and Σ
such that Q is a filtration of I and Σ and there exists a function RV from
Ω into Ω2 such that for every element i of I, RV is a random variable of
Mσ -field(Q, i) and Σ2. The theorem is a consequence of (30) and (29).

(32) Let us consider non empty sets Ω, Ω2, a σ-field Σ of subsets of Ω, a σ-
field Σ2 of subsets of Ω2, a non empty subset I of R, and a filtration Q of
I and Σ. Then there exists a function RV from Ω into Ω2 such that for
every element i of I, RV is a random variable of Mσ -field(Q, i) and Σ2.
Proof: Consider w being an object such that w ∈ Ω2. Set m1 = w.
Consider m being a function from Ω into Ω2 such that m = Ω 7−→ m1.
For every element i of I, m is a random variable of Mσ -field(Q, i) and Σ2

by [13, (7)], [11, (5), (4)]. �

5. Stochastic Process: Adapted and Predictable

Now we state the proposition:

(33) Let us consider a non empty set Ω, a σ-field Σ of subsets of Ω, and a σ-
field Σ2 of subsets of Ω. If Σ2 ⊆ Σ, then every event of Σ2 is an event of
Σ.

Let Ω, Ω2 be non empty sets, Σ be a σ-field of subsets of Ω, Σ2 be a σ-field
of subsets of Ω2, I be a non empty subset of R, and P be a probability on Σ.

A stochastic process of I, Σ, Σ2 and P is a function from I into the set of
random variables on Σ and Σ2 and is defined by

(Def. 14) for every element k of I, there exists a function RV from Ω into Ω2 such
that it(k) = RV and RV is random variable on Σ and Σ2.

Let S be a stochastic process of I, Σ, Σ2 and P and k be an element of I.
The k-RV of S yielding a random variable of Σ and Σ2 is defined by the term

(Def. 15) S(k).

An adapted stochastic process of I, Σ, Σ2, P and S is a function from I into
the set of random variables on Σ and Σ2 and is defined by

(Def. 16) there exists a filtration k of I and Σ such that for every element i of I,
the i-RV of S is random variable on the i-EF of k and Σ2.

Let I be a non empty subset of N, J be a non empty subset of N, and S be
a stochastic process of J(∈ 2R), Σ, Σ2 and P .

A predictable stochastic process of I, J , Σ, Σ2, P and S is a function from
J into the set of random variables on Σ and Σ2 and is defined by
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(Def. 17) there exists a filtration k of I(∈ 2R) and Σ such that for every element
j of J(∈ 2R) for every element i of I(∈ 2R) such that j − 1 = i holds
the j-RV of S is random variable on the i-EF of k and Σ2.

Let I be a non empty subset of R, M be a filtration of I and Σ, and S be
a stochastic process of I, Σ, Σ2 and P . We say that S is M -stochastic process
w.r.t. filtration if and only if

(Def. 18) for every element i of I, the i-RV of S is random variable on the i-EF
of M and Σ2.

Now we state the proposition:

(34) Let us consider non empty sets Ω, Ω2, a σ-field Σ of subsets of Ω, a σ-
field Σ2 of subsets of Ω2, a non empty subset I of R, a probability P on Σ,
a filtration M of I and Σ, and a stochastic process S of I, Σ, Σ2 and P .
Suppose S is M -stochastic process w.r.t. filtration. Then S is an adapted
stochastic process of I, Σ, Σ2, P and S.

6. Example for a Stochastic Process

Let k1, k2 be elements of R, Ω be a non empty set, and k be an element of
Ω. The functors: Set1-RV(k1, k2, k) and Set4-RV(k1, k2, k) yielding elements of
R are defined by terms

(Def. 19)

{
k1, if k = 1 or k = 2,
k2, otherwise,

(Def. 20)

{
k1, if k = 3,
k2, otherwise,

respectively. Let k2, k3, k4 be elements of R. The functor Set3-RV(k2, k3, k4, k)
yielding an element of R is defined by the term

(Def. 21)

{
k2, if k = 2,
Set4-RV(k3, k4, k), otherwise.

Let k1, k2, k3, k4 be elements of R. The functor Set2-RV(k1, k2, k3, k4, k)
yielding an element of R is defined by the term

(Def. 22)

{
k1, if k = 1,
Set3-RV(k2, k3, k4, k), otherwise.

Now we state the proposition:

(35) Let us consider elements k1, k2, k3, k4 of R, and a set Ω. Suppose Ω =
{1, 2, 3, 4}. Then there exists a function f from Ω into R such that

(i) f(1) = k1, and

(ii) f(2) = k2, and
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(iii) f(3) = k3, and

(iv) f(4) = k4.

Proof: Define U(element of Ω) = Set2-RV(k1, k2, k3, k4, $1). Consider
f being a function from Ω into R such that for every element d of Ω,
f(d) = U(d) from [5, Sch. 4]. f(1) = k1. f(2) = k2. f(3) = k3. f(4) = k4.
�

Let us consider a set Ω.
Let us assume that Ω = {1, 2, 3, 4}. Now we state the propositions:

(36) There exists a function f from Ω into R such that

(i) f(1) = 100, and

(ii) f(2) = 100, and

(iii) f(3) = 100, and

(iv) f(4) = 100.

The theorem is a consequence of (35).

(37) There exists a function f from Ω into R such that

(i) f(1) = 80, and

(ii) f(2) = 80, and

(iii) f(3) = 120, and

(iv) f(4) = 120.

The theorem is a consequence of (35).

(38) There exists a function f from Ω into R such that

(i) f(1) = 60, and

(ii) f(2) = 80, and

(iii) f(3) = 100, and

(iv) f(4) = 120.

The theorem is a consequence of (35).

(39) Let us consider elements k1, k2, k3, k4 of R, and a non empty set Ω.
Suppose Ω = {1, 2, 3, 4}. Let us consider a σ-field Σ of subsets of Ω, a non
empty subset I of R, and a filtration M of I and Σ. Suppose M(1) = Ωnow

and M(2) = Ωfut1 and M(3) = Ωfut2. Let us consider an element k of I.
Suppose k = 3. Then there exists a function f from Ω into R such that

(i) f(1) = k1, and

(ii) f(2) = k2, and

(iii) f(3) = k3, and
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(iv) f(4) = k4, and

(v) f is random variable on the k-EF of M and the Borel sets.

Proof: Consider f being a function from Ω into R such that f(1) = k1

and f(2) = k2 and f(3) = k3 and f(4) = k4. 1, 2, 3, 4 ∈ dom f . f is
random variable on the k-EF of M and the Borel sets by [4, (1)], [11, (4)].
�

Let us consider a non empty set Ω, a σ-field Σ of subsets of Ω, a non empty
subset I of R, a filtration M of I and Σ, and an element k of I.

Let us assume that Ω = {1, 2, 3, 4}. Now we state the propositions:

(40) Suppose M(1) = Ωnow and M(2) = Ωfut1 and M(3) = Ωfut2. Then
suppose k = 3. Then there exists a function f from Ω into R such that

(i) f(1) = 60, and

(ii) f(2) = 80, and

(iii) f(3) = 100, and

(iv) f(4) = 120, and

(v) f is random variable on the k-EF of M and the Borel sets.

The theorem is a consequence of (39).

(41) Suppose M(1) = Ωnow and M(2) = Ωfut1 and M(3) = Ωfut2. Then
suppose k = 3. Then there exists a function f from Ω into R such that

(i) f(1) = 180, and

(ii) f(2) = 120, and

(iii) f(3) = 120, and

(iv) f(4) = 80, and

(v) f is random variable on the k-EF of M and the Borel sets.

The theorem is a consequence of (39).

(42) Let us consider elements k1, k2 of R, and a non empty set Ω. Suppose
Ω = {1, 2, 3, 4}. Let us consider a σ-field Σ of subsets of Ω, a non empty
subset I of R, and a filtration M of I and Σ. Suppose M(1) = Ωnow and
M(2) = Ωfut1 and M(3) = Ωfut2. Let us consider an element k of I.
Suppose k = 2. Then there exists a function f from Ω into R such that

(i) f(1) = k1, and

(ii) f(2) = k1, and

(iii) f(3) = k2, and

(iv) f(4) = k2, and

(v) f is random variable on the k-EF of M and the Borel sets.
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Proof: Consider f being a function from Ω into R such that f(1) = k1

and f(2) = k1 and f(3) = k2 and f(4) = k2. Set i = k. For every set x,
f−1(x) ∈ the i-EF of M by [4, (1)]. �

Let us consider a non empty set Ω, a σ-field Σ of subsets of Ω, a non empty
subset I of R, a filtration M of I and Σ, and an element k of I.

Let us assume that Ω = {1, 2, 3, 4}. Now we state the propositions:

(43) Suppose M(1) = Ωnow and M(2) = Ωfut1 and M(3) = Ωfut2. Then
suppose k = 2. Then there exists a function f from Ω into R such that

(i) f(1) = 80, and

(ii) f(2) = 80, and

(iii) f(3) = 120, and

(iv) f(4) = 120, and

(v) f is random variable on the k-EF of M and the Borel sets.

The theorem is a consequence of (42).

(44) Suppose M(1) = Ωnow and M(2) = Ωfut1 and M(3) = Ωfut2. Then
suppose k = 2. Then there exists a function f from Ω into R such that

(i) f(1) = 150, and

(ii) f(2) = 150, and

(iii) f(3) = 100, and

(iv) f(4) = 100, and

(v) f is random variable on the k-EF of M and the Borel sets.

The theorem is a consequence of (42).

(45) Let us consider an element k1 of R, and a non empty set Ω. Suppose
Ω = {1, 2, 3, 4}. Let us consider a σ-field Σ of subsets of Ω, a non empty
subset I of R, and a filtration M of I and Σ. Suppose M(1) = Ωnow and
M(2) = Ωfut1 and M(3) = Ωfut2. Let us consider an element k of I.
Suppose k = 1. Then there exists a function f from Ω into R such that

(i) f(1) = k1, and

(ii) f(2) = k1, and

(iii) f(3) = k1, and

(iv) f(4) = k1, and

(v) f is random variable on the k-EF of M and the Borel sets.

Proof: Consider f being a function from Ω into R such that f(1) = k1

and f(2) = k1 and f(3) = k1 and f(4) = k1. Set i = k. For every set x
such that x ∈ the Borel sets holds f−1(x) ∈ the i-EF of M by [4, (1)]. �
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Let us consider a non empty set Ω, a σ-field Σ of subsets of Ω, a non empty
subset I of R, a filtration M of I and Σ, and an element k of I.

Let us assume that Ω = {1, 2, 3, 4}. Now we state the propositions:

(46) Suppose M(1) = Ωnow and M(2) = Ωfut1 and M(3) = Ωfut2. Then
suppose k = 1. Then there exists a function f from Ω into R such that

(i) f(1) = 100, and

(ii) f(2) = 100, and

(iii) f(3) = 100, and

(iv) f(4) = 100, and

(v) f is random variable on the k-EF of M and the Borel sets.

The theorem is a consequence of (45).

(47) Suppose M(1) = Ωnow and M(2) = Ωfut1 and M(3) = Ωfut2. Then
suppose k = 1. Then there exists a function f from Ω into R such that

(i) f(1) = 125, and

(ii) f(2) = 125, and

(iii) f(3) = 125, and

(iv) f(4) = 125, and

(v) f is random variable on the k-EF of M and the Borel sets.

The theorem is a consequence of (45).

Now we state the proposition:

(48) Let us consider a non empty set Ω. Suppose Ω = {1, 2, 3, 4}. Let us
consider a σ-field Σ of subsets of Ω, and a non empty subset I of R.
Suppose I = {1, 2, 3} and Σ = 2{1,2,3,4}. Let us consider a filtration M of
I and Σ. Suppose M(1) = Ωnow and M(2) = Ωfut1 and M(3) = Ωfut2.
Let us consider a probability P on Σ, and an element i of I. Then there
exists a function RV from Ω into R such that RV is random variable on
the i-EF of M and the Borel sets. The theorem is a consequence of (46),
(43), and (40).

Let I be a non empty subset of R. Assume I = {1, 2, 3}. Let i be an element
of I. Assume i = 2 or i = 3. Let Ω be a non empty set. Assume Ω = {1, 2, 3, 4}.
Let Σ be a σ-field of subsets of Ω. Assume Σ = 2Ω. Let f1 be a function from
Ω into R. Assume f1(1) = 60 and f1(2) = 80 and f1(3) = 100 and f1(4) = 120.
Let f2 be a function from Ω into R. Assume f2(1) = 80 and f2(2) = 80 and
f2(3) = 120 and f2(4) = 120. Let f3 be a function from Ω into R. The functor
Select12-RV(i,Σ, f1, f2, f3) yielding an element of the set of random variables
on Σ and the Borel sets is defined by the term
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(Def. 23)

{
f2, if i = 2,
f1, otherwise.

Assume I = {1, 2, 3}. Assume Ω = {1, 2, 3, 4}. Assume Σ = 2Ω. Let f1, f2 be
functions from Ω into R. Assume f3(1) = 100 and f3(2) = 100 and f3(3) = 100
and f3(4) = 100. The functor Select123-RV(i,Σ, f1, f2, f3) yielding an element
of the set of random variables on Σ and the Borel sets is defined by the term

(Def. 24)

{
Select12-RV(i,Σ, f1, f2, f3), if i = 2 or i = 3,
f3, otherwise.

Now we state the proposition:

(49) Let us consider non empty sets Ω, Ω2. Suppose Ω = {1, 2, 3, 4}. Let us
consider a σ-field Σ of subsets of Ω, and a non empty subset I of R. Suppose
I = {1, 2, 3} and Σ = 2{1,2,3,4}. Let us consider a probability P on Σ, and
a filtration M of I and Σ. Suppose M(1) = Ωnow and M(2) = Ωfut1 and
M(3) = Ωfut2. Then there exists a stochastic process S of I, Σ, the Borel
sets and P such that

(i) for every element k of I, there exists a function RV from Ω into R
such that S(k) = RV and RV is random variable on Σ and the Borel
sets and random variable on the k-EF of M and the Borel sets and
there exists a function f from Ω into R such that if k = 1, then
f(1) = 100 and f(2) = 100 and f(3) = 100 and f(4) = 100 and
S(k) = f and there exists a function f from Ω into R such that if
k = 2, then f(1) = 80 and f(2) = 80 and f(3) = 120 and f(4) = 120
and S(k) = f and there exists a function f from Ω into R such that if
k = 3, then f(1) = 60 and f(2) = 80 and f(3) = 100 and f(4) = 120
and S(k) = f and S is M -stochastic process w.r.t. filtration, and

(ii) S is an adapted stochastic process of I, Σ, the Borel sets, P and S.

Proof: Consider f3 being a function from Ω into R such that f3(1) =
100 and f3(2) = 100 and f3(3) = 100 and f3(4) = 100. Consider f2

being a function from Ω into R such that f2(1) = 80 and f2(2) = 80 and
f2(3) = 120 and f2(4) = 120. Consider f1 being a function from Ω into R
such that f1(1) = 60 and f1(2) = 80 and f1(3) = 100 and f1(4) = 120.
Define U(element of I) = Select123-RV($1,Σ, f1, f2, f3). Consider f4 being
a function from I into the set of random variables on Σ and the Borel sets
such that for every element d of I, f4(d) = U(d) from [5, Sch. 4]. For
every element k of I, there exists a function RV from Ω into R such that
f4(k) = RV and RV is random variable on Σ and the Borel sets. For
every element k of I, there exists a function RV from Ω into R such that
f4(k) = RV and RV is random variable on Σ and the Borel sets and
random variable on the k-EF of M and the Borel sets and there exists
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a function f from Ω into R such that if k = 1, then f(1) = 100 and
f(2) = 100 and f(3) = 100 and f(4) = 100 and f4(k) = f and there
exists a function f from Ω into R such that if k = 2, then f(1) = 80
and f(2) = 80 and f(3) = 120 and f(4) = 120 and f4(k) = f and there
exists a function f from Ω into R such that if k = 3, then f(1) = 60
and f(2) = 80 and f(3) = 100 and f(4) = 120 and f4(k) = f and f4 is
M -stochastic process w.r.t. filtration and adapted stochastic process of I,
Σ, the Borel sets, P and f4. �
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Summary.We introduce, using the Mizar system [1], some basic concepts
of Euclidean geometry: the half length and the midpoint of a segment, the per-
pendicular bisector of a segment, the medians (the cevians that join the vertices
of a triangle to the midpoints of the opposite sides) of a triangle.

We prove the existence and uniqueness of the circumcenter of a triangle (the
intersection of the three perpendicular bisectors of the sides of the triangle). The
extended law of sines and the formula of the radius of the Morley’s trisector
triangle are formalized [3].

Using the generalized Ceva’s Theorem, we prove the existence and uniqueness
of the centroid (the common point of the medians [4]) of a triangle.
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1. Preliminaries

From now on n denotes a natural number, λ, λ2, µ, µ2 denote real numbers,
x1, x2 denote elements of Rn, A1, B1, C1 denote points of EnT, and a denotes
a real number.

Now we state the propositions:

(1) If A1 = (1−λ) ·x1 +λ ·x2 and B1 = (1−µ) ·x1 +µ ·x2, then B1−A1 =
(µ− λ) · (x2 − x1).

(2) If |a| = |1− a|, then a = 1
2 .
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In the sequel P , A, B denote elements of Rn and L denotes an element of
Lines(Rn).

Now we state the propositions:

(3) Line(P, P ) = {P}.
(4) If A1 = A and B1 = B, then Line(A1, B1) = Line(A,B).

(5) If A1 6= C1 and C1 ∈ L(A1, B1) and A1, C1 ∈ L and L is a line, then
B1 ∈ L. The theorem is a consequence of (4).

Let n be a natural number and S be a subset of Rn. We say that S is a point
if and only if

(Def. 1) there exists an element P of Rn such that S = {P}.
Now we state the propositions:

(6) (i) L is a line, or

(ii) there exists an element P of Rn such that L = {P}.
The theorem is a consequence of (3).

(7) L is a line or a point.

Let us assume that L is a line. Now we state the propositions:

(8) There exists no element P of Rn such that L = {P}.
(9) L is not a point.

2. Betweenness

In the sequel A, B, C denote points of E2
T.

Now we state the propositions:

(10) If C ∈ L(A,B), then |A−B| = |A− C|+ |C −B|.
(11) If |A − B| = |A − C| + |C − B|, then C ∈ L(A,B). The theorem is

a consequence of (10).

(12) Let us consider points p, q1, q2 of E2
T. Then p ∈ L(q1, q2) if and only if

ρ(q1, p) + ρ(p, q2) = ρ(q1, q2). The theorem is a consequence of (11).

Let us consider elements p, q, r of E2.
Let us assume that p, q, r are mutually different and p = A and q = B and

r = C. Now we state the propositions:

(13) A ∈ L(B,C) if and only if p is between q and r. The theorem is a con-
sequence of (12) and (11).

(14) A ∈ L(B,C) if and only if p is between q and r. The theorem is a con-
sequence of (13).
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3. Real Plane

From now on x, y, z, y1, y2 denote elements of R2, L, L1, L2 denote elements
of Lines(R2), D, E, F denote points of E2

T, and b, c, d, r, s denote real numbers.
Now we state the propositions:

(15) Let us consider elements O, O1, O2 of R2. Suppose O = [0, 0] and O1 =
[1, 0] and O2 = [0, 1]. Then R2 = Plane(O,O1, O2).

(16) R2 is an element of Planes(R2). The theorem is a consequence of (15).

(17) (i) [1, 0] 6= [0, 1], and

(ii) [1, 0] 6= [0, 0], and

(iii) [0, 1] 6= [0, 0].

(18) There exists x such that x /∈ L. The theorem is a consequence of (6) and
(17).

(19) There exists L such that

(i) L is a point, and

(ii) L misses L1.

The theorem is a consequence of (18) and (3).

Let us assume that L1 ∦ L2. Now we state the propositions:

(20) (i) there exists x such that L1 = {x} or L2 = {x}, or

(ii) L1 is a line and L2 is a line and there exists x such that L1∩L2 = {x}.
The theorem is a consequence of (3) and (16).

(21) (i) L1 is a point, or

(ii) L2 is a point, or

(iii) L1 is a line and L2 is a line and L1 ∩ L2 is a point.

Now we state the proposition:

(22) If L1 ∩ L2 is a point and A ∈ L1 ∩ L2, then L1 ∩ L2 = {A}.

4. The Midpoint of a Segment

Let A, B be points of E2
T. The functor half-length(A,B) yielding a real

number is defined by the term

(Def. 2) (1
2) · |A−B|.

Now we state the propositions:

(23) half-length(A,B) = half-length(B,A).

(24) half-length(A,A) = 0.
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(25) |A− (1
2) · (A+B)| = (1

2) · |A−B|.
(26) There exists C such that

(i) C ∈ L(A,B), and

(ii) |A− C| = (1
2) · |A−B|.

The theorem is a consequence of (25).

(27) If |A−B| = |A− C| and B, C ∈ L(A,D), then B = C. The theorem is
a consequence of (1).

Let A, B be points of E2
T. The functor SegMidpoint(A,B) yielding a point

of E2
T is defined by

(Def. 3) there exists C such that C ∈ L(A,B) and it = C and |A − C| =
half-length(A,B).

Now we state the propositions:

(28) SegMidpoint(A,B) ∈ L(A,B).

(29) SegMidpoint(A,B) = (1
2) · (A + B). The theorem is a consequence of

(25).

(30) SegMidpoint(A,B) = SegMidpoint(B,A). The theorem is a consequence
of (29).

(31) SegMidpoint(A,A) = A. The theorem is a consequence of (29).

(32) If SegMidpoint(A,B) = A, then A = B. The theorem is a consequence
of (29).

(33) If SegMidpoint(A,B) = B, then A = B. The theorem is a consequence
of (30) and (32).

Let us assume that C ∈ L(A,B) and |A− C| = |B − C|. Now we state the
propositions:

(34) half-length(A,B) = |A− C|. The theorem is a consequence of (10).

(35) C = SegMidpoint(A,B). The theorem is a consequence of (34).

Now we state the propositions:

(36) |A − SegMidpoint(A,B)| = |SegMidpoint(A,B) − B|. The theorem is
a consequence of (29) and (25).

(37) If A 6= B and r is positive and r 6= 1 and |A− C| = r · |A−B|, then A,
B, C are mutually different.

(38) If C ∈ L(A,B) and |A−C| = (1
2) · |A−B|, then |B−C| = (1

2) · |A−B|.
The theorem is a consequence of (10).
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5. Perpendicularity

Now we state the propositions:

(39) L1 and L2 are coplanar. The theorem is a consequence of (15).

(40) If L1 ⊥ L2, then L1 meets L2.

(41) If L1 is a line and L2 is a line and L1 misses L2, then L1 ‖ L2.

(42) Suppose L1 6= L2 and L1 meets L2. Then

(i) there exists x such that L1 = {x} or L2 = {x}, or

(ii) L1 is a line and L2 is a line and there exists x such that L1∩L2 = {x}.

The theorem is a consequence of (20).

Let us assume that L1 ⊥ L2. Now we state the propositions:

(43) There exists x such that L1 ∩ L2 = {x}. The theorem is a consequence
of (39), (8), and (42).

(44) L1 ∩ L2 is a point.

Now we state the propositions:

(45) If L1 ⊥ L2, then L1 ∦ L2. The theorem is a consequence of (39).

(46) If L1 is a line and L2 is a line and L1 ‖ L2, then L1 6⊥ L2.

Now we state the propositions:

(47) If L1 is a line, then there exists L2 such that x ∈ L2 and L1 ⊥ L2. The
theorem is a consequence of (18).

(48) If L1 ⊥ L2 and L1 = Line(A,B) and L2 = Line(C,D), then |(B−A,D−
C)| = 0. The theorem is a consequence of (1).

(49) If L is a line and A, B ∈ L and A 6= B, then L = Line(A,B). The
theorem is a consequence of (4).

Let us assume that L1 ⊥ L2 and C ∈ L1 ∩ L2 and A ∈ L1 and B ∈ L2 and
A 6= C and B 6= C. Now we state the propositions:

(50) (i) ](A,C,B) = π
2 , or

(ii) ](A,C,B) = 3·π
2 .

The theorem is a consequence of (49) and (48).

(51) A, B, C form a triangle.
Proof: A /∈ Line(B,C) by [5, (67)], (43), (49). �



22 roland coghetto

6. The Perpendicular Bisector of a Segment

Now we state the proposition:

(52) Suppose A 6= B and L1 = Line(A,B) and C ∈ L(A,B) and |A − C| =
(1

2) · |A−B|. Then there exists L2 such that

(i) C ∈ L2, and

(ii) L1 ⊥ L2.

The theorem is a consequence of (4) and (47).

Let A, B be elements of E2
T. Assume A 6= B. The functor PerpBisec(A,B)

yielding an element of Lines(R2) is defined by

(Def. 4) there exist elements L1, L2 of Lines(R2) such that it = L2 and L1 =
Line(A,B) and L1 ⊥ L2 and L1 ∩ L2 = {SegMidpoint(A,B)}.

Let us assume that A 6= B. Now we state the propositions:

(53) PerpBisec(A,B) is a line.

(54) PerpBisec(A,B) = PerpBisec(B,A). The theorem is a consequence of
(43), (16), and (30).

(55) Suppose A 6= B and L1 = Line(A,B) and C ∈ L(A,B) and |A − C| =
(1

2)·|A−B| and C ∈ L2 and L1 ⊥ L2 and D ∈ L2. Then |D−A| = |D−B|.
The theorem is a consequence of (38), (37), and (50).

(56) If A 6= B and C ∈ PerpBisec(A,B), then |C−A| = |C−B|. The theorem
is a consequence of (28) and (55).

(57) If C ∈ Line(A,B) and |A−C| = |B−C|, then C ∈ L(A,B). The theorem
is a consequence of (4), (3), and (2).

(58) If A 6= B, then SegMidpoint(A,B) ∈ PerpBisec(A,B).

(59) If A 6= B and L1 = Line(A,B) and L1 ⊥ L2 and SegMidpoint(A,B) ∈
L2, then L2 = PerpBisec(A,B). The theorem is a consequence of (16).

(60) If A 6= B and |C−A| = |C−B|, then C ∈ PerpBisec(A,B). The theorem
is a consequence of (47), (43), (50), (57), (35), (58), and (59).

7. The Circumcircle of a Triangle

Let us assume that A, B, C form a triangle. Now we state the propositions:

(61) PerpBisec(A,B) ∩ PerpBisec(B,C) is a point. The theorem is a conse-
quence of (16), (8), and (20).

(62) There exists D such that

(i) PerpBisec(A,B) ∩ PerpBisec(B,C) = {D}, and
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(ii) PerpBisec(B,C) ∩ PerpBisec(C,A) = {D}, and

(iii) PerpBisec(C,A) ∩ PerpBisec(A,B) = {D}, and

(iv) |D −A| = |D −B|, and

(v) |D −A| = |D − C|, and

(vi) |D −B| = |D − C|.
The theorem is a consequence of (61), (56), and (60).

Let A, B, C be points of E2
T. Assume A, B, C form a triangle. The functor

Circumcenter4(A,B,C) yielding a point of E2
T is defined by

(Def. 5) PerpBisec(A,B) ∩ PerpBisec(B,C) = {it} and
PerpBisec(B,C) ∩ PerpBisec(C,A) = {it} and
PerpBisec(C,A) ∩ PerpBisec(A,B) = {it}.

Assume A, B, C form a triangle. The functor RadCircumCirc4(A,B,C)
yielding a real number is defined by the term

(Def. 6) |Circumcenter4(A,B,C)−A|.
(63) If A, B, C form a triangle, then there exists a and there exists b and there

exists r such that A, B, C ∈ circle(a, b, r). The theorem is a consequence
of (62).

(64) Suppose A, B, C form a triangle and A, B, C ∈ circle(a, b, r). Then

(i) [a, b] = Circumcenter4(A,B,C), and

(ii) r = |Circumcenter4(A,B,C)−A|.
The theorem is a consequence of (60), (22), and (61).

Let us assume that A, B, C form a triangle. Now we state the propositions:

(65) RadCircumCirc4(A,B,C) > 0. The theorem is a consequence of (63)
and (64).

(66) (i) |Circumcenter4(A,B,C) − A| = |Circumcenter4(A,B,C) − B|,
and

(ii) |Circumcenter4(A,B,C) − A| = |Circumcenter4(A,B,C) − C|,
and

(iii) |Circumcenter4(A,B,C)−B| = |Circumcenter4(A,B,C)− C|.
The theorem is a consequence of (62).

(67) (i) RadCircumCirc4(A,B,C) = |Circumcenter4(A,B,C)−B|, and

(ii) RadCircumCirc4(A,B,C) = |Circumcenter4(A,B,C)− C|.
The theorem is a consequence of (66).

(68) If A, B, C form a triangle and A, B, C ∈ circle(a, b, r) and A, B,
C ∈ circle(c, d, s), then a = c and b = d and r = s. The theorem is
a consequence of (64).
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(69) If r 6= s, then circle(a, b, r) misses circle(a, b, s).

8. Extended Law of Sines

Now we state the propositions:

(70) Suppose A, B, C form a triangle and A, B, C ∈ circle(a, b, r) and A, B,
D form a triangle and A, B, D ∈ circle(a, b, r) and C 6= D. Then

(i) �I(A,B,C) = �I(D,B,C), or

(ii) �I(A,B,C) = −�I(D,B,C).

Proof: D, B, C form a triangle by [6, (20), (11)], [2, (68)], [6, (30)]. �

(71) Suppose A, B, C form a triangle and A, B, C ∈ circle(a, b, r). Then

(i) �I(A,B,C) = 2 · r, or

(ii) �I(A,B,C) = −2 · r.
The theorem is a consequence of (70).

(72) If A, B, C form a triangle and 0 < ](C,B,A) < π, then �I(A,B,C) >
0.

(73) IfA,B, C form a triangle and π < ](C,B,A) < 2·π, then�I(A,B,C) <
0.

(74) Suppose A, B, C form a triangle and 0 < ](C,B,A) < π and A, B,
C ∈ circle(a, b, r). Then �I(A,B,C) = 2·r. The theorem is a consequence
of (71) and (72).

(75) Suppose A, B, C form a triangle and π < ](C,B,A) < 2 · π and A, B,
C ∈ circle(a, b, r). Then �I(A,B,C) = −2 · r. The theorem is a consequ-
ence of (71) and (73).

(76) Suppose A, B, C form a triangle and 0 < ](C,B,A) < π and A, B,
C ∈ circle(a, b, r). Then

(i) |A−B| = 2 · r · sin](A,C,B), and

(ii) |B − C| = 2 · r · sin](B,A,C), and

(iii) |C −A| = 2 · r · sin](C,B,A).

The theorem is a consequence of (74).

(77) Suppose A, B, C form a triangle and π < ](C,B,A) < 2 · π and A, B,
C ∈ circle(a, b, r). Then

(i) |A−B| = −2 · r · sin](A,C,B), and

(ii) |B − C| = −2 · r · sin](B,A,C), and

(iii) |C −A| = −2 · r · sin](C,B,A).
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The theorem is a consequence of (75).

(78) Extended law of sines:
Suppose A, B, C form a triangle and 0 < ](C,B,A) < π and A, B,
C ∈ circle(a, b, r). Then

(i) |A−B|
sin ](A,C,B) = 2 · r, and

(ii) |B−C|
sin ](B,A,C) = 2 · r, and

(iii) |C−A|
sin ](C,B,A) = 2 · r.

The theorem is a consequence of (76).

(79) Suppose A, B, C form a triangle and π < ](C,B,A) < 2 · π and A, B,
C ∈ circle(a, b, r). Then

(i) |A−B|
sin ](A,C,B) = −2 · r, and

(ii) |B−C|
sin ](B,A,C) = −2 · r, and

(iii) |C−A|
sin ](C,B,A) = −2 · r.

The theorem is a consequence of (77).

9. The Centroid of a Triangle

Now we state the proposition:

(80) Suppose A, B, C form a triangle and D = (1 − (1
2)) · B + (1

2) · C and
E = (1− (1

2)) ·C+(1
2) ·A and F = (1− (1

2)) ·A+(1
2) ·B. Then Line(A,D),

Line(B,E), Line(C,F ) are concurrent.

Let A, B, C be points of E2
T. The functor Median4(A,B,C) yielding an ele-

ment of Lines(R2) is defined by the term

(Def. 7) Line(A,SegMidpoint(B,C)).

(81) Median4(A,A,A) = {A}. The theorem is a consequence of (4), (3), and
(31).

(82) Median4(A,A,B) = Line(A,B). The theorem is a consequence of (28),
(32), (4), (3), and (81).

(83) Median4(A,B,A) = Line(A,B). The theorem is a consequence of (28),
(33), (4), (3), and (81).

(84) Median4(B,A,A) = Line(A,B).

Let us assume that A, B, C form a triangle. Now we state the propositions:

(85) Median4(A,B,C) is a line. The theorem is a consequence of (6) and
(28).
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(86) There exists D such that

(i) D ∈ Median4(A,B,C), and

(ii) D ∈ Median4(B,C,A), and

(iii) D ∈ Median4(C,A,B).

The theorem is a consequence of (29), (80), and (4).

(87) There exists D such that

(i) Median4(A,B,C) ∩Median4(B,C,A) = {D}, and

(ii) Median4(B,C,A) ∩Median4(C,A,B) = {D}, and

(iii) Median4(C,A,B) ∩Median4(A,B,C) = {D}.
The theorem is a consequence of (86), (4), (85), (28), (32), (5), (8), and
(20).

Let A, B, C be points of E2
T. Assume A, B, C form a triangle. The functor

Centroid4(A,B,C) yielding a point of E2
T is defined by

(Def. 8) Median4(A,B,C)∩Median4(B,C,A) = {it} and Median4(B,C,A)∩
Median4(C,A,B) = {it} and Median4(C,A,B)∩Median4(A,B,C) =
{it}.
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Summary.We introduce the altitudes of a triangle (the cevians perpendi-
cular to the opposite sides). Using the generalized Ceva’s Theorem, we prove the
existence and uniqueness of the orthocenter of a triangle [7]. Finally, we formalize
in Mizar [1] some formulas [2] to calculate distance using triangulation.
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1. Preliminaries

From now on n denotes a natural number, i denotes an integer, r, s, t denote
real numbers, A1, B1, C1, D1 denote points of EnT, L1, L2 denote elements of
Lines(Rn), and A, B, C denote points of E2

T.
Now we state the propositions:

(1) If 0 < i · r < r, then i = 1.

(2) Let us consider an integer i. If −3
2 < i < 1

2 , then i = 0 or i = −1.

(3) Suppose r is not zero and s is not zero and t is not zero. Then (−r−s) ·
(−t−r ) · (−s−t ) = 1.

(4) If 0 < r < 2 · π, then sin( r2) 6= 0. The theorem is a consequence of (1).

(5) If −2 · π < r < 0, then sin( r2) 6= 0. The theorem is a consequence of (4).

(6) tan(2 · π − r) = −tan r.

(7) If A1 ∈ Line(B1, C1) and A1 6= C1, then Line(B1, C1) = Line(A1, C1).
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(8) If A1 6= C1 and A1 ∈ Line(B1, C1), then B1 ∈ Line(A1, C1).

(9) Suppose A1 6= B1 and A1 6= C1 and |(A1 − B1, A1 − C1)| = 0 and
L1 = Line(A1, B1) and L2 = Line(A1, C1). Then L1 ⊥ L2.

(10) If B1 6= C1 and |(B1 −A1, B1 − C1)| = 0, then A1 6= C1.

(11) |(A1 −B1, A1 − C1)| = |(B1 −A1, C1 −A1)|.
(12) Suppose B1 6= C1 and r = −( |(B1,C1)|−|(C1,C1)|−|(A1,B1)|+|(A1,C1)||(B1−C1,B1−C1)| ) and

D1 = r ·B1 + (1− r) · C1. Then |(D1 −A1, D1 − C1)| = 0.

(13) If A1 6= B1 and C1 = r ·A1 + (1− r) ·B1 and C1 = B1, then r = 0.

(14) (i) |(B1, C1)|−|(C1, C1)|−|(A1, B1)|+|(A1, C1)| = |(C1−A1, B1−C1)|,
and

(ii) |(B1 − C1, B1 − C1)|+ |(C1 −A1, B1 − C1)| = |(B1 − C1, B1 −A1)|.
(15) |(A1 −B1, A1 − C1)| = −|(A1 −B1, C1 −A1)|.
(16) |(B1 −A1, C1 −A1)| = |(A1 −B1, A1 − C1)|.
(17) |(B1 − A1, C1 − A1)| = −|(B1 −A1, A1 − C1)|. The theorem is a conse-

quence of (16) and (15).

(18) Suppose B1 6= C1 and C1 6= A1 and A1 6= B1 and |(C1 − A1, B1 − C1)|
is not zero and |(B1 − C1, A1 − B1)| is not zero and |(C1 − A1, A1 −
B1)| is not zero and r = −( |(B1,C1)|−|(C1,C1)|−|(A1,B1)|+|(A1,C1)||(B1−C1,B1−C1)| ) and s =

−( |(C1,A1)|−|(A1,A1)|−|(B1,C1)|+|(B1,A1)||(C1−A1,C1−A1)| ) and

t = −( |(A1,B1)|−|(B1,B1)|−|(C1,A1)|+|(C1,B1)||(A1−B1,A1−B1)| ). Then
(
( r1−r )·s
1−s )·t
1−t = 1. The the-

orem is a consequence of (14), (15), and (3).

(19) If C1 = r ·A1 + (1− r) ·B1 and r = 1, then C1 = A1.

(20) If C1 = r ·A1 + (1− r) ·B1 and r = 0, then C1 = B1.

(21) If |(B1 − C1, B1 − C1)| = −|(C1 −A1, B1 − C1)|, then |(B1 − C1, A1 −
B1)| = 0. The theorem is a consequence of (15).

(22) Suppose B1 6= C1 and r = −( |(B1,C1)|−|(C1,C1)|−|(A1,B1)|+|(A1,C1)||(B1−C1,B1−C1)| ) and
r = 1. Then |(B1 − C1, A1 − B1)| = 0. The theorem is a consequence of
(14) and (21).

(23) If A 6= B and A 6= C, then |A−B|+ |A− C| 6= 0.

(24) If A, B, C form a triangle, then A /∈ Line(B,C).

(25) If A 6= B and B 6= C and |(B −A,B −C)| = 0, then ](A,B,C) = π
2 or

](A,B,C) = (3
2) · π.

(26) If A, B, C form a triangle, then sin(](A,B,C)
2 ) > 0.

(27) If ](B,A,C) 6= ](C,B,A), then sin(](B,A,C)−](C,B,A)
2 ) 6= 0. The the-

orem is a consequence of (5) and (4).
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(28) If A, B, C form a triangle, then sin](A,B,C) 6= 0.

Let us assume that A, C, B form a triangle and ](A,C,B) < π. Now we
state the propositions:

(29) ](A,C,B) = π − (](C,B,A) + ](B,A,C)).

(30) ](B,A,C)+](C,B,A) = π−](A,C,B). The theorem is a consequence
of (29).

Let us assume that A, B, C form a triangle. Now we state the propositions:

(31) ](B,A,C)− ](C,B,A) 6= π.

(32) ](B,A,C)− ](C,B,A) 6= −π.

Let us assume that A, B, C form a triangle. Now we state the propositions:

(33) (−2) · π < ](B,A,C)− ](C,B,A) < 2 · π.

(34) −π < ](B,A,C)−](C,B,A)
2 < π. The theorem is a consequence of (33).

Let us assume that A, B, C form a triangle and ](B,A,C) < π. Now we
state the propositions:

(35) −π < ](B,A,C)− ](C,B,A) < π.

(36) −(π2 ) < ](B,A,C)−](C,B,A)
2 < π

2 . The theorem is a consequence of (35).

2. Orthocenter

From now on D denotes a point of E2
T and a, b, c, d denote real numbers.

Let A, B, C be points of E2
T. Assume B 6= C. The functor Altit4(A,B,C)

yielding an element of Lines(R2) is defined by

(Def. 1) there exist elements L1, L2 of Lines(R2) such that it = L1 and L2 =
Line(B,C) and A ∈ L1 and L1 ⊥ L2.

Let us assume that B 6= C. Now we state the propositions:

(37) A ∈ Altit4(A,B,C).

(38) Altit4(A,B,C) is a line.

(39) Altit4(A,B,C) = Altit4(A,C,B).

Now we state the propositions:

(40) If B 6= C and D ∈ Altit4(A,B,C), then
Altit4(D,B,C) = Altit4(A,B,C).

(41) If B 6= C and D ∈ Line(B,C) and D 6= C, then Altit4(A,B,C) =
Altit4(A,D,C). The theorem is a consequence of (7).

LetA,B, C be points of E2
T. AssumeB 6= C. The functor FootAltit4(A,B,C)

yielding a point of E2
T is defined by
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(Def. 2) there exists a point P of E2
T such that it = P and Altit4(A,B,C) ∩

Line(B,C) = {P}.
Let us assume that B 6= C. Now we state the propositions:

(42) FootAltit4(A,B,C) = FootAltit4(A,C,B). The theorem is a conse-
quence of (39).

(43) (i) FootAltit4(A,B,C) ∈ Line(B,C), and

(ii) FootAltit4(A,B,C) ∈ Altit4(A,B,C).

Now we state the propositions:

(44) If B 6= C and A /∈ Line(B,C), then Altit4(A,B,C) =
Line(A,FootAltit4(A,B,C)). The theorem is a consequence of (43).

(45) If B 6= C and A ∈ Line(B,C), then FootAltit4(A,B,C) = A.

(46) If B 6= C and FootAltit4(A,B,C) = A, then A ∈ Line(B,C).

Let us assume that B 6= C. Now we state the propositions:

(47) |(A− FootAltit4(A,B,C), B − C)| = 0. The theorem is a consequence
of (44) and (45).

(48) |(A−FootAltit4(A,B,C), B−FootAltit4(A,B,C))| = 0. The theorem
is a consequence of (43), (44), and (45).

(49) |(A−FootAltit4(A,B,C), C−FootAltit4(A,B,C))| = 0. The theorem
is a consequence of (42) and (48).

Now we state the propositions:

(50) If B 6= C and B = FootAltit4(A,B,C), then |(B−A,B−C)| = 0. The
theorem is a consequence of (49), (11), and (43).

(51) If B 6= C and D ∈ Line(B,C) and D 6= C, then FootAltit4(A,B,C) =
FootAltit4(A,D,C). The theorem is a consequence of (7) and (41).

(52) If B 6= C and |(B−A,B−C)| = 0, then B = FootAltit4(A,B,C). The
theorem is a consequence of (9) and (45).

(53) If B 6= C and B 6= A and ](A,B,C) = π
2 , then FootAltit4(A,B,C) =

B. The theorem is a consequence of (11) and (52).

(54) If A, B, C form a triangle, then A 6= FootAltit4(A,B,C). The theorem
is a consequence of (43).

(55) If A, B, C form a triangle and |(B −A,B − C)| 6= 0, then
FootAltit4(A,B,C), B, A form a triangle.
Proof: Set p = FootAltit4(A,B,C). Consider P being a point of E2

T such
that FootAltit4(A,B,C) = P and Altit4(A,B,C) ∩ Line(B,C) = {P}.
Consider L1, L2 being elements of Lines(R2) such that Altit4(A,B,C) =
L1 and L2 = Line(B,C) and A ∈ L1 and L1 ⊥ L2. P 6= B. p 6= A. p, B, A
are mutually different. P ∈ Line(B,C). B, C ∈ Line(B,P ). ](p,B,A) 6= π
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by [11, (11)], [12, (12)], (50), (8). ](B,A, p) 6= π by [11, (11)], [12, (12)].
](A, p,B) 6= π by [11, (11)], [12, (12)], (8), (54). �

Let A, B, C be points of E2
T. Assume B 6= C. The functor |Altit4(A,B,C)|

yielding a real number is defined by the term

(Def. 3) |A− FootAltit4(A,B,C)|.
Let us assume that B 6= C. Now we state the propositions:

(56) 0 ¬ |Altit4(A,B,C)|.
(57) |Altit4(A,B,C)| = |Altit4(A,C,B)|. The theorem is a consequence

of (42).

Now we state the propositions:

(58) If B 6= C and |(B − A,B − C)| = 0, then |FootAltit4(A,B,C)− A| =
|A−B|. The theorem is a consequence of (52).

(59) Suppose B 6= C and r = −( |(B,C)|−|(C,C)|−|(A,B)|+|(A,C)|
|(B−C,B−C)| ) and D = r ·B+

(1− r) · C and D 6= C. Then D = FootAltit4(A,B,C).
Proof: |(D−A,D−C)| = 0. D = FootAltit4(A,D,C). D ∈ Line(B,C)
by [6, (4)]. �

(60) Suppose B 6= C and r = −( |(B,C)|−|(C,C)|−|(A,B)|+|(A,C)|
|(B−C,B−C)| ) and D = r ·B+

(1 − r) · C and D = C. Then C = FootAltit4(A,B,C). The theorem is
a consequence of (13), (14), (15), (52), and (42).

(61) Suppose A, B, C form a triangle and |(C − A,B − C)| is not zero and
|(B − C,A − B)| is not zero and |(C − A,A − B)| is not zero. Then
Line(A,FootAltit4(A,B,C)), Line(C,FootAltit4(C,A,B)),
Line(B,FootAltit4(B,C,A)) are concurrent. The theorem is a consequ-
ence of (60), (17), (47), (59), (18), and (22).

(62) If A, B, C form a triangle and |(C −A,B − C)| is zero, then
FootAltit4(A,B,C) = C and FootAltit4(B,C,A) = C. The theorem is
a consequence of (15), (52), and (42).

(63) Suppose A, B, C form a triangle and C ∈ Altit4(A,B,C) and C ∈
Altit4(B,C,A). Then Altit4(A,B,C) ∩Altit4(B,C,A) is a point.
Proof: Consider L1, L2 being elements of Lines(R2) such that
Altit4(A,B,C) = L1 and L2 = Line(B,C) and A ∈ L1 and L1 ⊥ L2.
Consider L3, L4 being elements of Lines(R2) such that Altit4(B,C,A) =
L3 and L4 = Line(C,A) and B ∈ L3 and L3 ⊥ L4. L1 ∦ L3 by [9, (41)],
[6, (16)], [8, (108)], [12, (13)]. L1 is not a point and L3 is not a point. �

(64) Suppose B, C, A form a triangle and C ∈ Altit4(B,C,A) and C ∈
Altit4(C,A,B). Then Altit4(B,C,A) ∩Altit4(C,A,B) is a point.
Proof: Consider L1, L2 being elements of Lines(R2) such that
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Altit4(B,C,A) = L1 and L2 = Line(C,A) and B ∈ L1 and L1 ⊥ L2.
Consider L3, L4 being elements of Lines(R2) such that Altit4(C,A,B) =
L3 and L4 = Line(A,B) and C ∈ L3 and L3 ⊥ L4. L1 ∦ L3 by [8, (71),
(111)], [6, (16)], [9, (41)]. L1 is not a point and L3 is not a point. �

(65) Suppose C, A, B form a triangle and C ∈ Altit4(C,A,B) and C ∈
Altit4(A,B,C). Then Altit4(C,A,B) ∩Altit4(A,B,C) is a point.
Proof: Consider L1, L2 being elements of Lines(R2) such that
Altit4(C,A,B) = L1 and L2 = Line(A,B) and C ∈ L1 and L1 ⊥ L2.
Consider L3, L4 being elements of Lines(R2) such that Altit4(A,B,C) =
L3 and L4 = Line(B,C) and A ∈ L3 and L3 ⊥ L4. L1 ∦ L3 by [8, (71),
(111)], [6, (16)], [9, (41)]. L1 is not a point and L3 is not a point. �

(66) Suppose A, B, C form a triangle and |(C −A,B − C)| = 0. Then

(i) Altit4(A,B,C) ∩Altit4(B,C,A) = {C}, and

(ii) Altit4(B,C,A) ∩Altit4(C,A,B) = {C}, and

(iii) Altit4(C,A,B) ∩Altit4(A,B,C) = {C}.
Proof: A /∈ Line(B,C) and B /∈ Line(C,A). FootAltit4(A,B,C) =
C and FootAltit4(B,C,A) = C. Altit4(A,B,C) = Line(A,C) and
Altit4(B,C,A) = Line(B,C). C ∈ Altit4(C,A,B). Altit4(A,B,C) ∩
Altit4(B,C,A) = {C} by [6, (22)], (63). Altit4(B,C,A)∩Altit4(C,A,B)
= {C} by [12, (15)], (37), (64), [6, (22)]. Altit4(C,A,B)∩Altit4(A,B,C)
= {C} by [12, (15)], (37), (65), [6, (22)]. �

(67) Suppose A, B, C form a triangle. Then there exists a point P of E2
T such

that

(i) Altit4(A,B,C) ∩Altit4(B,C,A) = {P}, and

(ii) Altit4(B,C,A) ∩Altit4(C,A,B) = {P}, and

(iii) Altit4(C,A,B) ∩Altit4(A,B,C) = {P}.
The theorem is a consequence of (66), (61), (24), (44), and (38).

Let A, B, C be points of E2
T. Assume A, B, C form a triangle. The functor

Orthocenter4(A,B,C) yielding a point of E2
T is defined by

(Def. 4) Altit4(A,B,C) ∩Altit4(B,C,A) = {it} and Altit4(B,C,A) ∩Altit
4(C,A,B) = {it} and Altit4(C,A,B) ∩Altit4(A,B,C) = {it}.

3. Triangulation

Let us assume that B 6= A. Now we state the propositions:

(68) (sin](B,A,C)+sin](C,B,A)) ·(|C−B|−|C−A|) = (sin](B,A,C)−
sin](C,B,A)) · (|C −B|+ |C −A|).



Altitude, orthocenter of a triangle and triangulation 33

(69) sin(](B,A,C)+](C,B,A)
2 ) · cos(](B,A,C)−](C,B,A)

2 ) · (|C − B| − |C − A|) =

sin(](B,A,C)−](C,B,A)
2 ) · cos(](B,A,C)+](C,B,A)

2 ) · (|C − B| + |C − A|). The
theorem is a consequence of (68).

Now we state the proposition:

(70) Suppose A, B, C form a triangle and ](B,A,C)− ](C,B,A) 6= π and

](B,A,C) − ](C,B,A) 6= −π. Then cos(](B,A,C)−](C,B,A)
2 ) 6= 0. The

theorem is a consequence of (2).

Let us assume that A, C, B form a triangle and ](A,C,B) < π. Now we
state the propositions:

(71) tan(](B,A,C)−](C,B,A)
2 ) = cot(](A,C,B)

2 ) · ( |C−B|−|C−A||C−B|+|C−A|).

Proof: ](B,A,C)−](C,B,A) 6= π and ](B,A,C)−](C,B,A) 6= −π.
Set α = ](B,A,C)−](C,B,A)

2 . Set β = ](B,A,C)+](C,B,A)
2 . ](A,C,B) = π −

(](C,B,A)+](B,A,C)). Set α1 = ](A,C,B)
2 . sinα1 6= 0. |C−B|+|C−A| 6=

0 by [11, (42)]. sinβ · cosα · (|C −B| − |C −A|) = sinα · cosβ · (|C −B|+
|C−A|). (|C−B|−|C−A|) ·cosα1 ·1 = (|C−B|+ |C−A|) ·sinα1 ·( sinα

cosα).
�

(72) ](B,A,C)−](C,B,A)
2 = arctan(cot(](A,C,B)

2 ) · ( |C−B|−|C−A||C−B|+|C−A|)). The theorem
is a consequence of (71) and (36).

(73) ](B,A,C)−](C,B,A) = 2 · arctan(cot(](A,C,B)
2 ) · ( |C−B|−|C−A||C−B|+|C−A|)). The

theorem is a consequence of (72).

(74) (i) ](B,A,C) = arctan(cot(](A,C,B)
2 )·( |C−B|−|C−A||C−B|+|C−A|))+(π2 )−(](A,C,B)

2 ),
and

(ii) ](C,B,A) = (π2 )−(](A,C,B)
2 )−arctan(cot(](A,C,B)

2 ) ·( |C−B|−|C−A||C−B|+|C−A|)).

The theorem is a consequence of (73) and (30).

(75) |B − C| = |A−B|·sin ](B,A,C)
sin(](B,A,C)+](C,B,A)) .

Proof: |B − C| = |A−B|·sin ](B,A,C)
sin ](A,C,B) by [11, (6), (43)], (28). ](A,C,B) =

π − (](C,B,A) + ](B,A,C)). �

(76) |A− C| = |A−B|·sin ](C,B,A)
sin(](B,A,C)+](C,B,A)) .

Proof: |A − C| = |A−B|·sin ](C,B,A)
sin ](A,C,B) by [11, (6)], (28). ](A,C,B) = π −

(](C,B,A) + ](B,A,C)) by [11, (20)], [10, (47)]. �

Now we state the propositions:

(77) Suppose A, C, B form a triangle and ](C,A,B) = π
2 .

Then |Altit4(C,A,B)| = |A−B| · tan](A,B,C). The theorem is a con-
sequence of (11) and (58).

(78) Suppose A, B, C form a triangle and ](C,A,B) = (3
2) · π.
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Then |Altit4(C,A,B)| = |A−B| · tan](C,B,A). The theorem is a con-
sequence of (11) and (58).

(79) Suppose A, C, B form a triangle and |(A − C,A − B)| = 0. Then
|Altit4(C,A,B)| = |A − B| · | tan](A,B,C)|. The theorem is a con-
sequence of (11), (77), (56), (6), and (78).

(80) Suppose B 6= C and FootAltit4(A,B,C), B, A form a triangle. Then

(i) |A−B| ·sin](A,B,FootAltit4(A,B,C)) = |FootAltit4(A,B,C)−
A|, or

(ii) |A−B| · (−sin](A,B,FootAltit4(A,B,C))) =

|FootAltit4(A,B,C)−A|.
The theorem is a consequence of (48).

(81) Suppose A, B, C form a triangle and |(B −A,B − C)| 6= 0. Then

(i) |A−B| ·sin](A,B,FootAltit4(A,B,C)) = |FootAltit4(A,B,C)−
A|, or

(ii) |A−B| · (−sin](A,B,FootAltit4(A,B,C))) =

|FootAltit4(A,B,C)−A|.
The theorem is a consequence of (80) and (55).

(82) Suppose A, C, B form a triangle and ](A,C,B) < π and |(A− C,A−
B)| 6= 0. Then |Altit4(C,A,B)| = |A − B| · |( sin ](C,B,A)

sin(](B,A,C)+](C,B,A))) ·
sin](C,A,FootAltit4(C,A,B))|. The theorem is a consequence of (76),
(55), and (80).

(83) Suppose 0 < ](B,A,D) < π and 0 < ](D,A,C) < π and D, A, C are
mutually different and B, A, D are mutually different. Then ](A,C,D)+
](D,B,A) = 2 · π − (](B,A,C) + ](A,D,B) + ](C,D,A)).
Proof: ](B,A,D)+](D,A,C) = ](B,A,C) by [5, (2)], [11, (4)]. ](A,C,
D) = π − (](C,D,A) + ](D,A,C)) by [10, (47)]. ](D,B,A) = π −
(](A,D,B) + ](B,A,D)) by [10, (47)]. �

(84) Suppose A, C, B form a triangle and ](A,C,B) < π and A, D, B form
a triangle and ](A,D,B) < π and a = ](C,B,A) and b = ](B,A,C)
and c = ](D,B,A) and d = ](C,A,D). Then |D − C|2 = |A − B|2 ·
(( sin a

sin(a+b))2 + ( sin c
sin(b+d+c))2 − 2 · ( sin a

sin(b+a)) · ( sin c
sin(b+d+c)) · cos d).

Proof: Set e = b + d. sin(e + c) = sin(](B,A,D) + ](D,B,A)) by [14,
(79)]. �

(85) Suppose sin(2 · s) · cos d = cos(2 · t). Then (r · cos s)2 + (r · sin s)2 − 2 ·
(r · cos s) · (r · sin s) · cos d = 2 · r2 · (sin t)2.

(86) Let us consider real numbers R, ϑ. Suppose D 6= C and 0 ¬ R and A,
C, B form a triangle and ](A,C,B) < π and A, D, B form a triangle
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and ](A,D,B) < π and a = ](C,B,A) and b = ](B,A,C) and c =
](D,B,A) and d = ](C,A,D) and R · cos s = sin a

sin(a+b) and R · sin s =
sin c

sin(b+d+c) and 0 < ϑ < π and sin(2 · s) · cos d = cos(2 · ϑ). Then |D−C| =
|A−B| ·

√
2 ·R · sinϑ.

Proof: |D−C|2 = |A−B|2 · ((R · cos s)2+ (R · sin s)2− 2 · (R · cos s) · (R ·
sin s) · cos d). |D − C| 6= −|A−B| ·

√
2 ·R · sinϑ by [13, (25)], [11, (42)].

�

(87) Suppose A, C, B form a triangle and ](A,C,B) < π and D, A, C form
a triangle and ](A,D,C) = π

2 . Then |D − C| = ( |A−B|·sin ](C,B,A)
sin(](B,A,C)+](C,B,A))) ·

sin](C,A,D). The theorem is a consequence of (76).

(88) Suppose B, C, A form a triangle and ](B,C,A) < π and D, C, A form
a triangle and ](C,D,A) = π

2 . Then |D − C| = ( |A−B|·sin ](A,B,C)
sin(](A,B,C)+](C,A,B))) ·

sin](D,A,C). The theorem is a consequence of (75).

(89) Suppose A, C, B form a triangle and ](A,C,B) < π and D, A, C form a
triangle and ](A,D,C) = π

2 and A ∈ L(B,D) and A 6= D. Then |D−C| =
( |A−B|·sin ](C,B,A)

sin(](C,A,D)−](C,B,A))) · sin](C,A,D). The theorem is a consequence of
(87).

(90) Suppose B, C, A form a triangle and ](B,C,A) < π and D, C, A
form a triangle and ](C,D,A) = π

2 and A ∈ L(D,B) and A 6= D. Then

|D − C| = ( |A−B|·sin ](A,B,C)
sin(](D,A,C)−](A,B,C))) · sin](D,A,C).

Proof: sin(](C,A,B) + ](A,B,C)) = sin(](D,A,C) − ](A,B,C)) by
[4, (1)], [3, (8)]. �

References

[1] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Ma-
tuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and
beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Vol-
ker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in
Computer Science, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-
319-20614-1. doi:10.1007/978-3-319-20615-8 17.

[2] R. Campbell. La trigonométrie. Que sais-je? Presses universitaires de France, 1956.
[3] Wenpai Chang, Yatsuka Nakamura, and Piotr Rudnicki. Inner products and angles of

complex numbers. Formalized Mathematics, 11(3):275–280, 2003.
[4] Roland Coghetto. Some facts about trigonometry and Euclidean geometry. Formalized

Mathematics, 22(4):313–319, 2014. doi:10.2478/forma-2014-0031.
[5] Roland Coghetto. Morley’s trisector theorem. Formalized Mathematics, 23(2):75–79,

2015. doi:10.1515/forma-2015-0007.
[6] Roland Coghetto. Circumcenter, circumcircle and centroid of a triangle. Formalized

Mathematics, 24(1):17–26, 2016. doi:10.1515/forma-2016-0002.
[7] H.S.M. Coxeter and S.L. Greitzer. Geometry Revisited. The Mathematical Association of

America (Inc.), 1967.
[8] Akihiro Kubo. Lines on planes in n-dimensional Euclidean spaces. Formalized Mathema-

tics, 13(3):389–397, 2005.

http://dx.doi.org/10.1007/978-3-319-20615-8_17
http://dx.doi.org/10.1007/978-3-319-20615-8_17
http://dx.doi.org/10.1007/978-3-319-20615-8_17
http://fm.mizar.org/2003-11/pdf11-3/complex2.pdf
http://fm.mizar.org/2003-11/pdf11-3/complex2.pdf
http://dx.doi.org/10.2478/forma-2014-0031
http://dx.doi.org/10.1515/forma-2015-0007
http://dx.doi.org/\spaceskip 0.08mm 1 0 . 1 5 1 5 / f o r m a - 2 0 1 6 - 0 0 0 2
http://fm.mizar.org/2005-13/pdf13-3/euclidlp.pdf
http://dx.doi.org/10.1515/forma-2016-0002


36 roland coghetto

[9] Akihiro Kubo. Lines in n-dimensional Euclidean spaces. Formalized Mathematics, 11(4):
371–376, 2003.

[10] Akihiro Kubo and Yatsuka Nakamura. Angle and triangle in Euclidean topological space.
Formalized Mathematics, 11(3):281–287, 2003.

[11] Marco Riccardi. Heron’s formula and Ptolemy’s theorem. Formalized Mathematics, 16
(2):97–101, 2008. doi:10.2478/v10037-008-0014-2.

[12] Boris A. Shminke. Routh’s, Menelaus’ and generalized Ceva’s theorems. Formalized
Mathematics, 20(2):157–159, 2012. doi:10.2478/v10037-012-0018-9.

[13] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized
Mathematics, 1(3):445–449, 1990.

[14] Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle
ratio. Formalized Mathematics, 7(2):255–263, 1998.

Received December 30, 2015

http://fm.mizar.org/2003-11/pdf11-4/euclid_4.pdf
http://fm.mizar.org/2003-11/pdf11-3/euclid_3.pdf
http://dx.doi.org/10.2478/v10037-008-0014-2
http://dx.doi.org/10.2478/v10037-012-0018-9
http://fm.mizar.org/1990-1/pdf1-3/square_1.pdf
http://fm.mizar.org/1998-7/pdf7-2/sin_cos.pdf
http://fm.mizar.org/1998-7/pdf7-2/sin_cos.pdf


FORMALIZED MATHEMATICS

Vol. 24, No. 1, Pages 37–47, 2016
DOI: 10.1515/forma-2016-0004 degruyter.com/view/j/forma

Divisible Z-modules

Yuichi Futa
Japan Advanced Institute
of Science and Technology

Ishikawa, Japan

Yasunari Shidama
Shinshu University

Nagano, Japan

Summary. In this article, we formalize the definition of divisible Z-module
and its properties in the Mizar system [3]. We formally prove that any non-trivial
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1. Divisible Module

Let a, b be elements of FQ and x, y be rational numbers. We identify x+ y

with a+ b. We identify x · y with a · b. Let V be a Z-module and v be a vector
of V . We say that v is divisible if and only if

(Def. 1) for every element a of ZR such that a 6= 0ZR there exists a vector u of V
such that a · u = v.

Let us observe that 0V is divisible and there exists a vector of V which is
divisible.

Now we state the propositions:

(1) Let us consider a Z-module V , and divisible vectors v, u of V . Then v+u
is divisible.
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(2) Let us consider a Z-module V , and a divisible vector v of V . Then −v
is divisible.
Proof: For every element a of ZR such that a 6= 0ZR there exists a vector
w of V such that −v = a · w by [9, (6)]. �

(3) Let us consider a Z-module V , a divisible vector v of V , and an element
i of ZR. Then i · v is divisible.

Let V be a Z-module. We say that V is divisible if and only if

(Def. 2) every vector of V is divisible.

Observe that 0V is divisible and Z-moduleQ is divisible and there exists
a Z-module which is divisible.

Let V be a Z-module. Let us note that there exists a submodule of V which
is divisible and there exists a divisible Z-module which is non finitely generated.

Now we state the propositions:

(4) (The left integer multiplication of FQ)�(Z× Z) =
the left integer multiplication of ZR.
Proof: Set a = (the left integer multiplication of FQ)�(Z× Z). For every
object z such that z ∈ dom a holds a(z) = (the left integer multiplication
of ZR)(z) by [5, (49)], [13, (15)], [12, (14)]. �

(5) 〈the carrier of ZR, the addition of ZR, the zero of ZR, the left integer
multiplication of ZR〉 is a submodule of Z-moduleQ. The theorem is a con-
sequence of (4).

(6) Let us consider a divisible Z-module V , and a submodule W of V . Then
Z-ModuleQuot(V,W ) is divisible.

Let us note that there exists a divisible Z-module which is non trivial.
Now we state the proposition:

(7) Let us consider a Z-module V . Then V is divisible if and only if ΩV is
divisible.

Let us consider a Z-module V and a vector v of V . Now we state the pro-
positions:

(8) If v is not torsion, then Lin({v}) is not divisible.

(9) If v is torsion and v 6= 0V , then Lin({v}) is not divisible.

Let V be a non trivial Z-module and v be a non zero vector of V . Observe
that Lin({v}) is non divisible and there exists a submodule of V which is non
divisible.

Now we state the propositions:

(10) Every non trivial, finitely generated, torsion-free Z-module is not divi-
sible.
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Proof: Consider I being a finite subset of V such that I is a basis of V .
Consider v being an object such that v ∈ I. v is not divisible by [9, (92)],
[12, (19)], [19, (15)], [9, (9)]. �

(11) Let us consider a non trivial, finitely generated, torsion Z-module V .
Then there exists an element i of ZR such that

(i) i 6= 0, and

(ii) for every vector v of V , i · v = 0V .

Proof: Define P[natural number] ≡ for every finite subset I of V such
that I = $1 there exists an element i of ZR such that i 6= 0 and for every
vector v of V such that v ∈ Lin(I) holds i · v = 0V . P[0] by [10, (67)], [9,
(1)]. For every natural number n such that P[n] holds P[n+1] by [7, (40)],
[10, (72)], [1, (44)], [7, (31)]. For every natural number n, P[n] from [2,
Sch. 2]. Consider I being a finite subset of V such that Lin(I) = the vector
space structure of V . Consider i being an element of ZR such that i 6= 0
and for every vector v of V such that v ∈ Lin(I) holds i ·v = 0V . For every
vector v of V , i · v = 0V . �

(12) Let us consider a non trivial, finitely generated, torsion Z-module V , and
an element i of ZR. Suppose i 6= 0 and for every vector v of V , i · v = 0V .
Then V is not divisible.

(13) Every non trivial, finitely generated, torsion Z-module is not divisible.
The theorem is a consequence of (11) and (12).

One can verify that there exists a non trivial, finitely generated, torsion
Z-module which is non divisible.

Now we state the proposition:

(14) Every non trivial, finitely generated Z-module is not divisible. The the-
orem is a consequence of (13), (6), and (10).

Let us note that every non trivial, divisible Z-module is non finitely genera-
ted.

Let V be a non trivial, non divisible Z-module. One can verify that there
exists a non zero vector of V which is non divisible.

Let V be a non trivial, finite rank, free Z-module. Observe that rankV is
non zero.

Now we state the propositions:

(15) Let us consider a non trivial, free Z-module V , a non zero vector v of
V , and a basis I of V . Then there exists a linear combination L of I and
there exists a vector u of V such that v =

∑
L and u ∈ I and L(u) 6= 0.

Proof: Consider L being a linear combination of I such that v =
∑
L.

The support of L 6= ∅ by [10, (23)]. Consider u1 being an object such that
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u1 ∈ the support of L. Consider u being a vector of V such that u = u1

and L(u) 6= 0. �

(16) Let us consider a non trivial, free Z-module V . Then every non zero
vector of V is not divisible. The theorem is a consequence of (15).

Let us observe that every non trivial, free Z-module is non divisible.
Let us consider a non trivial, free Z-module V and a non zero vector v of V .

Now we state the propositions:

(17) There exists an element a of ZR such that

(i) a ∈ N, and

(ii) for every element b of ZR and for every vector u of V such that b > a

holds v 6= b · u.

Proof: Set I = the basis of V . Consider L being a linear combination of
I, w being a vector of V such that v =

∑
L and w ∈ I and L(w) 6= 0.

Reconsider a = |L(w)| as an element of ZR. For every element b of ZR and
for every vector u of V such that b > a holds v 6= b · u by [10, (64), (31),
(53)], [11, (3)]. �

(18) There exists an element a of ZR and there exists a vector u of V such
that a ∈ N and a 6= 0 and v = a · u and for every element b of ZR and for
every vector w of V such that b > a holds v 6= b · w.
Proof: Define P[natural number] ≡ there exists a vector u of V and there
exists an element k of ZR such that k = $1 and v = k ·u. Consider a being
an element of ZR such that a ∈ N and for every element b of ZR and for
every vector u of V such that b > a holds v 6= b · u. There exists a natural
number k such that P[k]. Consider a0 being a natural number such that
P[a0] and for every natural number n such that P[n] holds n ¬ a0 from [2,
Sch. 6]. Reconsider a = a0 as an element of ZR. Consider u being a vector
of V such that v = a · u. a 6= 0 by [9, (1)]. For every element b of ZR and
for every vector w of V such that b > a holds v 6= b · w by [18, (3)]. �

2. Divisible Module for Torsion-free Z-module

Let V be a torsion-free Z-module. The functor Embedding(V ) yielding a strict
Z-module is defined by

(Def. 3) the carrier of it = rng MorphsZQ(V ) and the zero of it = zeroCoset(V )
and the addition of it = addCoset(V ) � rng MorphsZQ(V ) and the left
multiplication of it = lmultCoset(V )�(Z× rng MorphsZQ(V )).

Let us consider a torsion-free Z-module V . Now we state the propositions:

(19) (i) every vector of Embedding(V ) is a vector of Z-MQVectSp(V ), and
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(ii) 0Embedding(V ) = 0Z-MQVectSp(V ), and

(iii) for every vectors x, y of Embedding(V ) and for every vectors v, w of
Z-MQVectSp(V ) such that x = v and y = w holds x + y = v + w,
and

(iv) for every element i of ZR and for every element j of FQ and for every
vector x of Embedding(V ) and for every vector v of Z-MQVectSp(V )
such that i = j and x = v holds i · x = j · v.

Proof: Set Z = Z-MQVectSp(V ). Set E = Embedding(V ). For every
vectors x, y of E and for every vectors v, w of Z such that x = v and
y = w holds x+ y = v +w by [5, (49)]. For every element i of ZR and for
every element j of FQ and for every vector x of E and for every vector v
of Z such that i = j and x = v holds i · x = j · v by [5, (49)]. �

(20) (i) for every vectors v, w of Z-MQVectSp(V ) such that

v, w ∈ Embedding(V ) holds v + w ∈ Embedding(V ), and

(ii) for every element j of FQ and for every vector v of Z-MQVectSp(V )
such that j ∈ Z and v ∈ Embedding(V ) holds j · v ∈ Embedding(V ).

The theorem is a consequence of (19).

(21) There exists a linear transformation T from V to Embedding(V ) such
that

(i) T is bijective, and

(ii) T = MorphsZQ(V ), and

(iii) for every vector v of V , T (v) = [〈〈v, 1〉〉]EQRZM(V ).

The theorem is a consequence of (19).

Now we state the proposition:

(22) Let us consider a torsion-free Z-module V , and a vector v1 of Embedding(V ).
Then there exists a vector v of V such that (MorphsZQ(V ))(v) = v1. The
theorem is a consequence of (21).

Let V be a torsion-free Z-module. The functor DivisibleMod(V ) yielding
a strict Z-module is defined by

(Def. 4) the carrier of it = Classes EQRZM(V ) and the zero of it = zeroCoset(V )
and the addition of it = addCoset(V ) and the left multiplication of it =
lmultCoset(V )�(Z× Classes EQRZM(V )).

Now we state the proposition:

(23) Let us consider a torsion-free Z-module V , a vector v of DivisibleMod(V ),
and an element a of ZR. Suppose a 6= 0. Then there exists a vector u of
DivisibleMod(V ) such that a · u = v.
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Proof: For every vector v of DivisibleMod(V ) and for every element a of
ZR such that a 6= 0 there exists a vector u of DivisibleMod(V ) such that
a · u = v by [5, (49)], [7, (87)]. �

Let V be a torsion-free Z-module. Let us observe that DivisibleMod(V ) is
divisible.

Now we state the proposition:

(24) Let us consider a torsion-free Z-module V . Then Embedding(V ) is a sub-
module of DivisibleMod(V ).
Proof: Set E = Embedding(V ). Set D = DivisibleMod(V ). For every
object x such that x ∈ the carrier of E holds x ∈ the carrier of D by
[6, (11), (5)]. The left multiplication of E = (the left multiplication of
D)�((the carrier of ZR)× rng MorphsZQ(V )) by [20, (74)], [7, (96)]. �

Let V be a finitely generated, torsion-free Z-module. One can check that
Embedding(V ) is finitely generated.

Let V be a non trivial, torsion-free Z-module. Observe that Embedding(V )
is non trivial.

Let G be a field, V be a vector space over G, W be a subset of V , and a be
an element of G. The functor a ·W yielding a subset of V is defined by the term

(Def. 5) {a · u, where u is a vector of V : u ∈W}.

Let V be a torsion-free Z-module and r be an element of FQ. The functor
Embedding(r, V ) yielding a strict Z-module is defined by

(Def. 6) the carrier of it = r·rng MorphsZQ(V ) and the zero of it = zeroCoset(V )
and the addition of it = addCoset(V ) � (r·rng MorphsZQ(V )) and the left
multiplication of it =
lmultCoset(V )�((the carrier of ZR)× (r · rng MorphsZQ(V ))).

Let us consider a torsion-free Z-module V and an element r of FQ. Now we
state the propositions:

(25) (i) every vector of Embedding(r, V ) is a vector of Z-MQVectSp(V ),
and

(ii) 0Embedding(r,V ) = 0Z-MQVectSp(V ), and

(iii) for every vectors x, y of Embedding(r, V ) and for every vectors v, w
of Z-MQVectSp(V ) such that x = v and y = w holds x+ y = v +w,
and

(iv) for every element i of ZR and for every element j of FQ and for every
vector x of Embedding(r, V ) and for every vector v of Z-MQVectSp(V )
such that i = j and x = v holds i · x = j · v.

Proof: Set Z = Z-MQVectSp(V ). Set E = Embedding(r, V ). For every
vectors x, y of E and for every vectors v, w of Z such that x = v and
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y = w holds x+ y = v +w by [5, (49)]. For every element i of ZR and for
every element j of FQ and for every vector x of E and for every vector v
of Z such that i = j and x = v holds i · x = j · v by [5, (49)]. �

(26) (i) for every vectors v, w of Z-MQVectSp(V ) such that

v, w ∈ Embedding(r, V ) holds v + w ∈ Embedding(r, V ), and

(ii) for every element j of FQ and for every vector v of Z-MQVectSp(V )
such that j ∈ Z and v ∈ Embedding(r, V ) holds j·v ∈ Embedding(r, V ).

The theorem is a consequence of (25).

(27) Suppose r 6= 0FQ . Then there exists a linear transformation T from
Embedding(V ) to Embedding(r, V ) such that

(i) for every element v of Z-MQVectSp(V ) such that v ∈ Embedding(V )
holds T (v) = r · v, and

(ii) T is bijective.

Proof: Set Z = Z-MQVectSp(V ). Define F(vector of Z) = r·$1. Consider
T being a function from the carrier of Z into the carrier of Z such that
for every element x of the carrier of Z, T (x) = F(x) from [6, Sch. 4]. Set
T0 = T �(the carrier of Embedding(V )). For every object y, y ∈ rng T0 iff
y ∈ the carrier of Embedding(r, V ) by [5, (49)]. T0 is additive by (19), (20),
[5, (49)], (25). For every element x of Embedding(V ) and for every element
i of ZR, T0(i ·x) = i ·T0(x) by (19), (20), [5, (49)], (25). For every element
v of Z-MQVectSp(V ) such that v ∈ Embedding(V ) holds T0(v) = r · v
by [5, (49)]. For every objects x1, x2 such that x1, x2 ∈ the carrier of
Embedding(V ) and T0(x1) = T0(x2) holds x1 = x2 by [14, (20)]. �

Now we state the propositions:

(28) Let us consider a torsion-free Z-module V , and a vector v of V . Then
[〈〈v, 1〉〉]EQRZM(V ) ∈ Embedding(V ).

(29) Let us consider a torsion-free Z-module V , and a vector v of DivisibleMod
(V ). Then there exists an element a of ZR such that

(i) a 6= 0, and

(ii) a · v ∈ Embedding(V ).

The theorem is a consequence of (28).

Let V be a torsion-free Z-module. One can check that DivisibleMod(V ) is
torsion-free and Embedding(V ) is torsion-free.

Let V be a free Z-module. Let us note that Embedding(V ) is free.
Let us consider a torsion-free Z-module V . Now we state the propositions:

(30) (i) every vector of Z-MQVectSp(V ) is a vector of DivisibleMod(V ),
and
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(ii) every vector of DivisibleMod(V ) is a vector of Z-MQVectSp(V ), and

(iii) 0DivisibleMod(V ) = 0Z-MQVectSp(V ).

(31) (i) for every vectors x, y of DivisibleMod(V ) and for every vectors v,
u of Z-MQVectSp(V ) such that x = v and y = u holds x+y = v+u,
and

(ii) for every vector z of DivisibleMod(V ) and for every vector w of
Z-MQVectSp(V ) and for every element a of ZR and for every ele-
ment a1 of FQ such that z = w and a = a1 holds a · z = a1 · w,
and

(iii) for every vector z of DivisibleMod(V ) and for every vector w of
Z-MQVectSp(V ) and for every element a1 of FQ and for every ele-
ment a of ZR such that a 6= 0 and a1 = a and a · z = a1 · w holds
z = w, and

(iv) for every vector x of DivisibleMod(V ) and for every vector v of
Z-MQVectSp(V ) and for every element r of FQ and for every ele-
ments m, n of ZR and for every integers m1, n1 such that m = m1

and n = n1 and x = v and r 6= 0FQ and n 6= 0 and r = m1
n1

there exists
a vector y of DivisibleMod(V ) such that x = n · y and r · v = m · y.

Proof: For every vector z of DivisibleMod(V ) and for every vector w of
Z-MQVectSp(V ) and for every element a of ZR and for every element a1

of FQ such that z = w and a = a1 holds a · z = a1 · w by [5, (49)], [7,
(87)]. For every vector z of DivisibleMod(V ) and for every vector w of
Z-MQVectSp(V ) and for every element a1 of FQ and for every element a
of ZR such that a 6= 0 and a1 = a and a ·z = a1 ·w holds z = w by (30), [9,
(8)], [19, (15), (21)]. For every vector x of DivisibleMod(V ) and for every
vector v of Z-MQVectSp(V ) and for every element r of FQ and for every
elements m, n of ZR and for every integers m1, n1 such that m = m1 and
n = n1 and x = v and r 6= 0FQ and n 6= 0 and r = m1

n1
there exists a vector

y of DivisibleMod(V ) such that x = n · y and r · v = m · y. �

Now we state the proposition:

(32) Let us consider a torsion-free Z-module V , and an element r of FQ.
Then Embedding(r, V ) is a submodule of DivisibleMod(V ). The theorem
is a consequence of (25) and (30).

Let V be a finitely generated, torsion-free Z-module and r be an element of
FQ. Observe that Embedding(r, V ) is finitely generated.

Let V be a non trivial, torsion-free Z-module and r be a non zero element
of FQ. One can verify that Embedding(r, V ) is non trivial.

Let V be a torsion-free Z-module and r be an element of FQ. Observe that
Embedding(r, V ) is torsion-free.
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Let V be a free Z-module and r be a non zero element of FQ. One can check
that Embedding(r, V ) is free.

Now we state the propositions:

(33) Let us consider a non trivial, free Z-module V , and a vector v
of DivisibleMod(V ). Then there exists an element a of ZR such that

(i) a ∈ N, and

(ii) a 6= 0, and

(iii) a · v ∈ Embedding(V ), and

(iv) for every element b of ZR such that b ∈ N and b < a and b 6= 0 holds
b · v /∈ Embedding(V ).

Proof: Consider a1 being an element of ZR such that a1 6= 0 and a1 · v ∈
Embedding(V ). |a1| · v ∈ Embedding(V ) by (24), [9, (16), (30)]. Define
P[natural number] ≡ there exists an element n of ZR such that n = $1

and n ∈ N and n 6= 0 and n · v ∈ Embedding(V ). There exists a natural
number k such that P[k] and for every natural number n such that P[n]
holds k ¬ n from [2, Sch. 5]. Consider a0 being a natural number such
that P[a0] and for every natural number b0 such that P[b0] holds a0 ¬ b0.
�

(34) Let us consider a finite rank, free Z-module V . Then rank Embedding(V ) =
rankV . The theorem is a consequence of (21).

Let us consider a finite rank, free Z-module V and a non zero element r of
FQ. Now we state the propositions:

(35) rank Embedding(r, V ) = rank Embedding(V ). The theorem is a conse-
quence of (27).

(36) rank Embedding(r, V ) = rankV . The theorem is a consequence of (35)
and (34).

Observe that every non trivial, torsion-free Z-module is infinite.
Now we state the propositions:

(37) Let us consider a Z-module V . Then there exists a subset A of V such
that

(i) A is linearly independent, and

(ii) for every vector v of V , there exists an element a of ZR such that
a ∈ N and a > 0 and a · v ∈ Lin(A).

Proof: Consider A being a subset of V such that ∅ ⊆ A and A is linearly
independent and for every vector v of V , there exists an element a1 of ZR

such that a1 6= 0 and a1 · v ∈ Lin(A). For every vector v of V , there exists
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an element a of ZR such that a ∈ N and a > 0 and a · v ∈ Lin(A) by [17,
(2)], [4, (46)], [18, (3)], [9, (16), (38)]. �

(38) Let us consider a non trivial, torsion-free Z-module V , a non zero vector
v of V , a subset A of V , and an element a of ZR. Suppose a ∈ N and A

is linearly independent and a > 0 and a · v ∈ Lin(A). Then there exists
a linear combination L of A and there exists a vector u of V such that
a · v =

∑
L and u ∈ A and L(u) 6= 0.

Proof: Consider L being a linear combination of A such that a ·v =
∑
L.

The support of L 6= ∅ by [10, (23)]. Consider u1 being an object such that
u1 ∈ the support of L. Consider u being a vector of V such that u = u1

and L(u) 6= 0. �

(39) Let us consider a torsion-free Z-module V , a non zero integer i, and non
zero elements r1, r2 of FQ. Suppose r2 = r1

i . Then Embedding(r1, V ) is
a submodule of Embedding(r2, V ).
Proof: For every vector x of DivisibleMod(V ) such that x ∈ Embedding(r1,

V ) holds x ∈ Embedding(r2, V ) by (27), [6, (11)], (19), [6, (5)]. Embedding
(r1, V ) is a submodule of DivisibleMod(V ) and Embedding(r2, V ) is a sub-
module of DivisibleMod(V ). �

(40) Let us consider a finite rank, free Z-module V , and a submodule Z of
DivisibleMod(V ). Then Z is finitely generated if and only if there exists
a non zero element r of FQ such that Z is a submodule of Embedding(r, V ).
The theorem is a consequence of (32), (29), (19), (27), (31), and (39).
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Summary. In this article, we formalize the definition of lattice of Z-module
and its properties in the Mizar system [5]. We formally prove that scalar products
in lattices are bilinear forms over the field of real numbers R. We also formalize the
definitions of positive definite and integral lattices and their properties. Lattice
of Z-module is necessary for lattice problems, LLL (Lenstra, Lenstra and Lovász)
base reduction algorithm [14], and cryptographic systems with lattices [15] and
coding theory [9].
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1. Definition of Lattices of Z-module

Now we state the proposition:

(1) Let us consider non empty setsD, E, natural numbers n,m, and a matrix
M over D of dimension n×m. Suppose for every natural numbers i, j such
that 〈〈i, j〉〉 ∈ the indices of M holds Mi,j ∈ E. Then M is a matrix over E
of dimension n×m.

Let a, b be elements of FQ and x, y be rational numbers. We identify x+ y

with a + b and x · y with a · b. Let F be a 1-sorted structure. We consider
structures of Z-lattice over F which extend vector space structures over F and
are systems

〈〈a carrier, an addition, a zero, a left multiplication,
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a scalar product〉〉

where the carrier is a set, the addition is a binary operation on the carrier,
the zero is an element of the carrier, the left multiplication is a function from
(the carrier of F )×(the carrier) into the carrier, the scalar product is a function
from (the carrier)× (the carrier) into the carrier of RF.

Note that there exists a structure of Z-lattice over F which is strict and non
empty.

Let D be a non empty set, Z be an element of D, a be a binary operation
on D, m be a function from (the carrier of F )×D into D, and s be a function
from D × D into the carrier of RF. One can check that 〈〈D, a, Z,m, s〉〉 is non
empty.

Let X be a non empty structure of Z-lattice over ZR and x, y be vectors of
X. The functor 〈〈x, y〉〉 yielding an element of RF is defined by the term

(Def. 1) (the scalar product of X)(〈〈x, y〉〉).
Let x be a vector of X. The functor ‖x‖ yielding an element of RF is defined

by the term

(Def. 2) 〈〈x, x〉〉.
Let X be a non empty structure of Z-lattice over ZR. We say that X is

Z-lattice-like if and only if

(Def. 3) for every vector x of X such that for every vector y of X, 〈〈x, y〉〉 = 0
holds x = 0X and for every vectors x, y of X, 〈〈x, y〉〉 = 〈〈y, x〉〉 and for every
vectors x, y, z of X and for every element a of ZR, 〈〈x+y, z〉〉 = 〈〈x, z〉〉+〈〈y, z〉〉
and 〈〈a · x, y〉〉 = a · 〈〈x, y〉〉.

Let V be a Z-module and s be a function from (the carrier of V )×(the carrier
of V ) into the carrier of RF. The functor GenLat(V, s) yielding a non empty
structure of Z-lattice over ZR is defined by the term

(Def. 4) 〈〈the carrier of V, the addition of V, 0V , the left multiplication of V, s〉〉.
Let us note that there exists a non empty structure of Z-lattice over ZR

which is vector distributive, scalar distributive, scalar associative, scalar unital,
Abelian, add-associative, right zeroed, right complementable, and strict.

Let V be a Z-module and s be a function from (the carrier of V )×(the carrier
of V ) into the carrier of RF. One can verify that GenLat(V, s) is Abelian, add-
associative, right zeroed, right complementable, scalar distributive, vector di-
stributive, scalar associative, and scalar unital.

Let us consider a Z-module V and a function s from (the carrier of V ) ×
(the carrier of V ) into the carrier of RF. Now we state the propositions:

(2) GenLat(V, s) is a submodule of V .

(3) V is a submodule of GenLat(V, s).
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Note that there exists an Abelian, add-associative, right zeroed, right com-
plementable, scalar distributive, vector distributive, scalar associative, scalar
unital, non empty structure of Z-lattice over ZR which is free.

Let V be a free Z-module and s be a function from (the carrier of V ) ×
(the carrier of V ) into the carrier of RF. Let us observe that GenLat(V, s) is free
and there exists an Abelian, add-associative, right zeroed, right complementa-
ble, scalar distributive, vector distributive, scalar associative, scalar unital,
non empty structure of Z-lattice over ZR which is torsion-free.

Now we state the proposition:

(4) Let us consider a finite rank, free Z-module V , and a function s from
(the carrier of V )× (the carrier of V ) into the carrier of RF.
Then GenLat(V, s) is finite rank. The theorem is a consequence of (2).

Let us note that there exists a free, Abelian, add-associative, right zeroed,
right complementable, scalar distributive, vector distributive, scalar associa-
tive, scalar unital, non empty structure of Z-lattice over ZR which is finite
rank.

Let V be a finite rank, free Z-module and s be a function from (the carrier
of V )× (the carrier of V ) into the carrier of RF. Let us note that GenLat(V, s)
is finite rank.

Now we state the proposition:

(5) Let us consider a finite rank, free Z-module V , and a function f from
(the carrier of 0V ) × (the carrier of 0V ) into the carrier of RF. Suppose
f = (the carrier of 0V )×(the carrier of 0V ) 7−→ 0RF . Then GenLat(0V , f)
is Z-lattice-like.
Proof: Set X = GenLat(0V , f). For every vector x of X such that for
every vector y of X, 〈〈x, y〉〉 = 0 holds x = 0X by [10, (26)]. For every
vectors x, y, z of X and for every element a of ZR, 〈〈x, y〉〉 = 〈〈y, x〉〉 and
〈〈x+ y, z〉〉 = 〈〈x, z〉〉+ 〈〈y, z〉〉 and 〈〈a · x, y〉〉 = a · 〈〈x, y〉〉 by [16, (7)], [8, (87)].
�

Note that there exists a non empty structure of Z-lattice over ZR which is
Z-lattice-like and there exists a finite rank, free, Abelian, add-associative, right
zeroed, right complementable, scalar distributive, vector distributive, scalar
associative, scalar unital, non empty structure of Z-lattice over ZR which is
Z-lattice-like.

There exists a finite rank, free, Z-lattice-like, Abelian, add-associative,
right zeroed, right complementable, scalar distributive, vector distributive,
scalar associative, scalar unital, non empty structure of Z-lattice over ZR

which is strict.
A Z-lattice is a finite rank, free, Z-lattice-like, Abelian, add-associative,
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right zeroed, right complementable, scalar distributive, vector distributive,
scalar associative, scalar unital, non empty structure of Z-lattice over ZR. Now
we state the proposition:

(6) Let us consider a non trivial, torsion-free Z-module V , a submodule Z
of V , a non zero vector v of V , and a function f from (the carrier of
Z)× (the carrier of Z) into the carrier of RF. Suppose Z = Lin({v}) and
for every vectors v1, v2 of Z and for every elements a, b of ZR such that
v1 = a · v and v2 = b · v holds f(v1, v2) = a · b. Then GenLat(Z, f) is
Z-lattice-like.
Proof: Set L = GenLat(Z, f). L is Z-lattice-like by [10, (26)], [12, (19)],
[10, (1)], [12, (21)]. �

Observe that there exists a Z-lattice which is non trivial.
Let V be a torsion-free Z-module. Let us observe that Z-MQVectSp(V )

is scalar distributive, vector distributive, scalar associative, scalar unital, add-
associative, right zeroed, right complementable, and Abelian as a non empty
vector space structure over FQ.

Now we state the propositions:

(7) Let us consider a Z-lattice L, and vectors v, u of L. Then

(i) 〈〈v,−u〉〉 = −〈〈v, u〉〉, and

(ii) 〈〈−v, u〉〉 = −〈〈v, u〉〉.
(8) Let us consider a Z-lattice L, and vectors v, u, w of L. Then 〈〈v, u+w〉〉 =
〈〈v, u〉〉+ 〈〈v, w〉〉.

(9) Let us consider a Z-lattice L, vectors v, u of L, and an element a of ZR.
Then 〈〈v, a · u〉〉 = a · 〈〈v, u〉〉.

(10) Let us consider a Z-lattice L, vectors v, u, w of L, and elements a, b of
ZR. Then

(i) 〈〈a · v + b · u,w〉〉 = a · 〈〈v, w〉〉+ b · 〈〈u,w〉〉, and

(ii) 〈〈v, a · u+ b · w〉〉 = a · 〈〈v, u〉〉+ b · 〈〈v, w〉〉.
The theorem is a consequence of (8) and (9).

(11) Let us consider a Z-lattice L, and vectors v, u, w of L. Then

(i) 〈〈v − u,w〉〉 = 〈〈v, w〉〉 − 〈〈u,w〉〉, and

(ii) 〈〈v, u− w〉〉 = 〈〈v, u〉〉 − 〈〈v, w〉〉.
The theorem is a consequence of (8) and (9).

(12) Let us consider a Z-lattice L, and a vector v of L. Then

(i) 〈〈v, 0L〉〉 = 0, and

(ii) 〈〈0L, v〉〉 = 0.
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The theorem is a consequence of (11).

Let X be a Z-lattice. We say that X is integral if and only if

(Def. 5) for every vectors v, u of X, 〈〈v, u〉〉 ∈ Z.

Observe that there exists a Z-lattice which is integral.
Let L be an integral Z-lattice and v, u be vectors of L. Let us observe that

〈〈v, u〉〉is integer.
Let v be a vector of L. Let us note that ‖v‖ is integer.
Now we state the propositions:

(13) Let us consider a Z-lattice L, a finite subset I of L, and a vector u of L.
Suppose for every vector v of L such that v ∈ I holds 〈〈v, u〉〉 ∈ Z. Let us
consider a vector v of L. If v ∈ Lin(I), then 〈〈v, u〉〉 ∈ Z.
Proof: Define P[natural number] ≡ for every finite subset I of L such
that I = $1 and for every vector v of L such that v ∈ I holds 〈〈v, u〉〉 ∈ Z
for every vector v of L such that v ∈ Lin(I) holds 〈〈v, u〉〉 ∈ Z. P[0] by [11,
(67)], (12). For every natural number n such that P[n] holds P[n+ 1] by
[8, (40)], [11, (72)], [1, (44)], [8, (31)]. For every natural number n, P[n]
from [3, Sch. 2]. �

(14) Let us consider a Z-lattice L, and a basis I of L. Suppose for every
vectors v, u of L such that v, u ∈ I holds 〈〈v, u〉〉 ∈ Z. Let us consider
vectors v, u of L. Then 〈〈v, u〉〉 ∈ Z.
Proof: Define P[natural number] ≡ for every finite subset I of L such that
I = $1 and for every vectors v, u of L such that v, u ∈ I holds 〈〈v, u〉〉 ∈ Z
for every vectors v, u of L such that v, u ∈ Lin(I) holds 〈〈v, u〉〉 ∈ Z. P[0] by
[11, (67)], (12). For every natural number n such that P[n] holds P[n+ 1]
by [8, (40)], [11, (72)], [1, (44)], [8, (31)]. For every natural number n, P[n]
from [3, Sch. 2]. �

(15) Let us consider a Z-lattice L, and a basis I of L. Suppose for every
vectors v, u of L such that v, u ∈ I holds 〈〈v, u〉〉 ∈ Z. Then L is integral.

Let X be a Z-lattice. We say that X is positive definite if and only if

(Def. 6) for every vector v of X such that v 6= 0X holds ‖v‖ > 0.

Let us observe that there exists a Z-lattice which is non trivial, integral, and
positive definite.

Let us consider a positive definite Z-lattice L and a vector v of L. Now we
state the propositions:

(16) ‖v‖ = 0 if and only if v = 0L.

(17) ‖v‖  0. The theorem is a consequence of (12).

Let X be an integral Z-lattice. We say that X is even if and only if

(Def. 7) for every vector v of X, ‖v‖ is even.
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One can verify that there exists an integral Z-lattice which is even.
Let L be a Z-lattice. We introduce the notation dim(L) as a synonym of

rankL.
Let v, u be vectors of L. We say that v, u are orthogonal if and only if

(Def. 8) 〈〈v, u〉〉 = 0.

Let us note that the predicate is symmetric.
Let us consider a Z-lattice L and vectors v, u of L.
Let us assume that v, u are orthogonal. Now we state the propositions:

(18) (i) v, −u are orthogonal, and

(ii) −v, u are orthogonal, and

(iii) −v, −u are orthogonal.
The theorem is a consequence of (7).

(19) ‖v + u‖ = ‖v‖+ ‖u‖. The theorem is a consequence of (8).

(20) ‖v − u‖ = ‖v‖+ ‖u‖. The theorem is a consequence of (11).

Let L be a Z-lattice.
A Z-sublattice of L is a Z-lattice and is defined by

(Def. 9) the carrier of it ⊆ the carrier of L and 0it = 0L and the addition of
it = (the addition of L) � (the carrier of it) and the left multiplication of
it = (the left multiplication of L)�((the carrier of ZR)×(the carrier of it))
and the scalar product of it = (the scalar product of L) � (the carrier of
it).

Now we state the propositions:

(21) Let us consider a Z-lattice L. Then every Z-sublattice of L is a submodule
of L.

(22) Let us consider an object x, a Z-lattice L, and Z-sublattices L1, L2 of L.
Suppose x ∈ L1 and L1 is a Z-sublattice of L2. Then x ∈ L2. The theorem
is a consequence of (21).

(23) Let us consider an object x, a Z-lattice L, and a Z-sublattice L1 of L. If
x ∈ L1, then x ∈ L. The theorem is a consequence of (21).

(24) Let us consider a Z-lattice L, and a Z-sublattice L1 of L. Then every
vector of L1 is a vector of L. The theorem is a consequence of (21).

(25) Let us consider a Z-lattice L, and Z-sublattices L1, L2 of L. Then 0L1 =
0L2 .

(26) Let us consider a Z-lattice L, a Z-sublattice L1 of L, vectors v1, v2 of L,
and vectors w1, w2 of L1. If w1 = v1 and w2 = v2, then w1 +w2 = v1 + v2.
The theorem is a consequence of (21).
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(27) Let us consider a Z-lattice L, a Z-sublattice L1 of L, a vector v of L,
a vector w of L1, and an element a of ZR. If w = v, then a ·w = a · v. The
theorem is a consequence of (21).

(28) Let us consider a Z-lattice L, a Z-sublattice L1 of L, a vector v of L, and
a vector w of L1. If w = v, then −w = −v. The theorem is a consequence
of (21).

(29) Let us consider a Z-lattice L, a Z-sublattice L1 of L, vectors v1, v2 of L,
and vectors w1, w2 of L1. If w1 = v1 and w2 = v2, then w1−w2 = v1− v2.
The theorem is a consequence of (21).

(30) Let us consider a Z-lattice L, and a Z-sublattice L1 of L. Then 0L ∈ L1.
The theorem is a consequence of (21).

(31) Let us consider a Z-lattice L, and Z-sublattices L1, L2 of L. Then 0L1 ∈
L2. The theorem is a consequence of (21).

(32) Let us consider a Z-lattice L, and a Z-sublattice L1 of L. Then 0L1 ∈ L.
The theorem is a consequence of (21).

(33) Let us consider a Z-lattice L, a Z-sublattice L1 of L, and vectors v1, v2

of L. If v1, v2 ∈ L1, then v1 + v2 ∈ L1. The theorem is a consequence of
(21).

(34) Let us consider a Z-lattice L, a Z-sublattice L1 of L, a vector v of L, and
an element a of ZR. If v ∈ L1, then a·v ∈ L1. The theorem is a consequence
of (21).

(35) Let us consider a Z-lattice L, a Z-sublattice L1 of L, and a vector v of
L. If v ∈ L1, then −v ∈ L1. The theorem is a consequence of (21).

(36) Let us consider a Z-lattice L, a Z-sublattice L1 of L, and vectors v1, v2

of L. If v1, v2 ∈ L1, then v1 − v2 ∈ L1. The theorem is a consequence of
(21).

(37) Let us consider a positive definite Z-lattice L, a non empty set A, an ele-
ment z of A, a binary operation a on A, a function m from (the carrier of
ZR)×A into A, and a function s from A×A into the carrier of RF. Suppose
A is a linearly closed subset of L and z = 0L and a = (the addition of
L) � A and m = (the left multiplication of L)�((the carrier of ZR)×A) and
s = (the scalar product of L) � A. Then 〈〈A, a, z,m, s〉〉 is a Z-sublattice of
L.
Proof: Set L1 = 〈〈A, a, z,m, s〉〉. Set V1 = 〈A, a, z,m〉. L1 is a submodule
of V1. L1 is Z-lattice-like by [10, (25)], [7, (49)], [10, (28), (29)]. �

(38) Let us consider a Z-lattice L, a Z-sublattice L1 of L, vectors w1, w2

of L1, and vectors v1, v2 of L. Suppose w1 = v1 and w2 = v2. Then
〈〈w1, w2〉〉 = 〈〈v1, v2〉〉.
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Let L be an integral Z-lattice. Note that every Z-sublattice of L is integral.
Let L be a positive definite Z-lattice. Let us observe that every Z-sublattice

of L is positive definite.
Let V , W be vector space structures over ZR.
An R-form of V and W is a function from (the carrier of V )× (the carrier

of W ) into the carrier of RF. The functor NulFrForm(V,W ) yielding an R-form
of V and W is defined by the term

(Def. 10) (the carrier of V )× (the carrier of W ) 7−→ 0RF .

Let V , W be non empty vector space structures over ZR and f , g be R-forms
of V and W . The functor f + g yielding an R-form of V and W is defined by

(Def. 11) for every vector v of V and for every vector w of W , it(v, w) = f(v, w)+
g(v, w).

Let f be an R-form of V and W and a be an element of RF. The functor
a · f yielding an R-form of V and W is defined by

(Def. 12) for every vector v of V and for every vector w of W , it(v, w) = a·f(v, w).

The functor −f yielding an R-form of V and W is defined by

(Def. 13) for every vector v of V and for every vector w of W , it(v, w) = −f(v, w).

One can verify that the functor −f is defined by the term

(Def. 14) (−1RF) · f .

Let f , g be R-forms of V and W . The functor f − g yielding an R-form of
V and W is defined by the term

(Def. 15) f +−g.

Observe that the functor f − g is defined by

(Def. 16) for every vector v of V and for every vector w of W , it(v, w) = f(v, w)−
g(v, w).

Let us note that the functor f + g is commutative.
Now we state the propositions:

(39) Let us consider non empty vector space structures V , W over ZR, and
an R-form f of V and W . Then f + NulFrForm(V,W ) = f .

(40) Let us consider non empty vector space structures V , W over ZR, and
R-forms f , g, h of V and W . Then (f + g) + h = f + (g + h).

(41) Let us consider non empty vector space structures V , W over ZR, and
an R-form f of V and W . Then f − f = NulFrForm(V,W ).

(42) Let us consider non empty vector space structures V , W over ZR, an ele-
ment a of RF, and R-forms f , g of V and W . Then a · (f +g) = a ·f +a ·g.

Let us consider non empty vector space structures V , W over ZR, elements
a, b of RF, and an R-form f of V and W . Now we state the propositions:
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(43) (a+ b) · f = a · f + b · f .

(44) (a · b) · f = a · (b · f).

(45) Let us consider non empty vector space structures V , W over ZR, and
an R-form f of V and W . Then 1RF · f = f .

Let V be a vector space structure over ZR.
An R-functional of V is a function from the carrier of V into the carrier

of RF. Let V be a non empty vector space structure over ZR and f , g be R-
functionals of V . The functor f + g yielding an R-functional of V is defined
by

(Def. 17) for every element x of V , it(x) = f(x) + g(x).

Let f be an R-functional of V . The functor −f yielding an R-functional of
V is defined by

(Def. 18) for every element x of V , it(x) = −f(x).

Let f , g be R-functionals of V . The functor f − g yielding an R-functional
of V is defined by the term

(Def. 19) f +−g.

Let v be an element of RF and f be an R-functional of V . The functor v · f
yielding an R-functional of V is defined by

(Def. 20) for every element x of V , it(x) = v · f(x).

Let V be a vector space structure over ZR. The functor 0FrFunctional(V )
yielding an R-functional of V is defined by the term

(Def. 21) ΩV 7−→ 0RF .

Let V be a non empty vector space structure over ZR and F be an R-
functional of V . We say that F is homogeneous if and only if

(Def. 22) for every vector x of V and for every scalar r of V , F (r · x) = r · F (x).

We say that F is 0-preserving if and only if

(Def. 23) F (0V ) = 0RF .

Let V be a Z-module. Note that every R-functional of V which is homoge-
neous is also 0-preserving.

Let V be a non empty vector space structure over ZR. One can verify
that 0FrFunctional(V ) is additive and 0FrFunctional(V ) is homogeneous and
0FrFunctional(V ) is 0-preserving and there exists an R-functional of V which is
additive, homogeneous, and 0-preserving.

Now we state the propositions:

(46) Let us consider a non empty vector space structure V over ZR, and
R-functionals f , g of V . Then f + g = g + f .
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(47) Let us consider a non empty vector space structure V over ZR, and
R-functionals f , g, h of V . Then (f + g) + h = f + (g + h).

(48) Let us consider a non empty vector space structure V over ZR, and
an element x of V . Then (0FrFunctional(V ))(x) = 0RF .

Let us consider a non empty vector space structure V over ZR and an R-
functional f of V . Now we state the propositions:

(49) f + 0FrFunctional(V ) = f .

(50) f − f = 0FrFunctional(V ).

(51) Let us consider a non empty vector space structure V over ZR, an element
r of RF, and R-functionals f , g of V . Then r · (f + g) = r · f + r · g.

Let us consider a non empty vector space structure V over ZR, elements r,
s of RF, and an R-functional f of V . Now we state the propositions:

(52) (r + s) · f = r · f + s · f .

(53) (r · s) · f = r · (s · f).

(54) Let us consider a non empty vector space structure V over ZR, and
an R-functional f of V . Then 1RF · f = f .

Let V be a non empty vector space structure over ZR and f , g be additive
R-functionals of V . Observe that f + g is additive.

Let f be an additive R-functional of V . One can check that −f is additive.
Let v be an element of RF. Let us note that v · f is additive.
Let f , g be homogeneous R-functionals of V . Let us observe that f + g is

homogeneous.
Let f be a homogeneous R-functional of V . Note that −f is homogeneous.
Let v be an element of RF. Observe that v · f is homogeneous.
Let V , W be non empty vector space structures over ZR, f be an R-form of

V and W , and v be a vector of V . The functor FrFunctionalFAF(f, v) yielding
an R-functional of W is defined by the term

(Def. 24) (curry f)(v).

Let w be a vector of W . The functor FrFunctionalSAF(f, w) yielding an R-
functional of V is defined by the term

(Def. 25) (curry′ f)(w).

Now we state the propositions:

(55) Let us consider non empty vector space structures V , W over ZR, an R-
form f of V and W , and a vector v of V . Then

(i) dom FrFunctionalFAF(f, v) = the carrier of W , and

(ii) rng FrFunctionalFAF(f, v) ⊆ the carrier of RF, and

(iii) for every vector w of W , (FrFunctionalFAF(f, v))(w) = f(v, w).
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(56) Let us consider non empty vector space structures V , W over ZR, an R-
form f of V and W , and a vector w of W . Then

(i) dom FrFunctionalSAF(f, w) = the carrier of V , and

(ii) rng FrFunctionalSAF(f, w) ⊆ the carrier of RF, and

(iii) for every vector v of V , (FrFunctionalSAF(f, w))(v) = f(v, w).

(57) Let us consider a non empty vector space structure V over ZR, and
an element x of V . Then (0FrFunctional(V ))(x) = 0RF .

(58) Let us consider non empty vector space structures V , W over ZR, and
a vector v of V . Then FrFunctionalFAF(NulFrForm(V,W ), v) =
0FrFunctional(W ). The theorem is a consequence of (55).

(59) Let us consider non empty vector space structures V , W over ZR, and
a vector w of W . Then FrFunctionalSAF(NulFrForm(V,W ), w) =
0FrFunctional(V ). The theorem is a consequence of (56).

(60) Let us consider non empty vector space structures V , W over ZR, R-
forms f , g of V and W , and a vector w of W . Then FrFunctionalSAF(f +
g, w) = FrFunctionalSAF(f, w) + FrFunctionalSAF(g, w). The theorem is
a consequence of (56).

(61) Let us consider non empty vector space structures V , W over ZR, R-
forms f , g of V and W , and a vector v of V . Then FrFunctionalFAF(f +
g, v) = FrFunctionalFAF(f, v) + FrFunctionalFAF(g, v). The theorem is
a consequence of (55).

(62) Let us consider non empty vector space structures V , W over ZR, an R-
form f of V and W , an element a of RF, and a vector w of W . Then
FrFunctionalSAF(a · f, w) = a · FrFunctionalSAF(f, w). The theorem is
a consequence of (56).

(63) Let us consider non empty vector space structures V , W over ZR, an R-
form f of V and W , an element a of RF, and a vector v of V . Then
FrFunctionalFAF(a · f, v) = a · FrFunctionalFAF(f, v). The theorem is
a consequence of (55).

(64) Let us consider non empty vector space structures V , W over ZR, an R-
form f of V andW , and a vector w ofW . Then FrFunctionalSAF(−f, w) =
−FrFunctionalSAF(f, w). The theorem is a consequence of (56).

(65) Let us consider non empty vector space structures V , W over ZR, an R-
form f of V and W , and a vector v of V . Then FrFunctionalFAF(−f, v) =
−FrFunctionalFAF(f, v). The theorem is a consequence of (55).

(66) Let us consider non empty vector space structures V , W over ZR, R-
forms f , g of V and W , and a vector w of W . Then FrFunctionalSAF(f −
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g, w) = FrFunctionalSAF(f, w)− FrFunctionalSAF(g, w). The theorem is
a consequence of (56).

(67) Let us consider non empty vector space structures V , W over ZR, R-
forms f , g of V and W , and a vector v of V . Then FrFunctionalFAF(f −
g, v) = FrFunctionalFAF(f, v) − FrFunctionalFAF(g, v). The theorem is
a consequence of (55).

Let V ,W be non empty vector space structures over ZR, f be an R-functional
of V , and g be an R-functional of W . The functor FrFormFunctional(f, g) yiel-
ding an R-form of V and W is defined by

(Def. 26) for every vector v of V and for every vector w of W , it(v, w) = f(v)·g(w).

(68) Let us consider non empty vector space structures V , W over ZR, an R-
functional f of V , a vector v of V , and a vector w of W .
Then (FrFormFunctional(f, 0FrFunctional(W )))(v, w) = 0ZR .

(69) Let us consider non empty vector space structures V , W over ZR, an R-
functional g of W , a vector v of V , and a vector w of W .
Then (FrFormFunctional(0FrFunctional(V ), g))(v, w) = 0ZR .

(70) Let us consider non empty vector space structures V , W over ZR, and
an R-functional f of V . Then FrFormFunctional(f, 0FrFunctional(W )) =
NulFrForm(V,W ). The theorem is a consequence of (68).

(71) Let us consider non empty vector space structures V , W over ZR, and
an R-functional g of W . Then FrFormFunctional(0FrFunctional(V ), g) =
NulFrForm(V,W ). The theorem is a consequence of (69).

(72) Let us consider non empty vector space structures V , W over ZR, an R-
functional f of V , an R-functional g of W , and a vector v of V . Then
FrFunctionalFAF(FrFormFunctional(f, g), v) = f(v) · g. The theorem is
a consequence of (55).

(73) Let us consider non empty vector space structures V , W over ZR, an R-
functional f of V , an R-functional g of W , and a vector w of W . Then
FrFunctionalSAF(FrFormFunctional(f, g), w) = g(w) · f . The theorem is
a consequence of (56).

2. Bilinear Forms over Field of Reals and Their Properties

Let V , W be non empty vector space structures over ZR and f be an R-form
of V and W . We say that f is additive w.r.t. second argument if and only if

(Def. 27) for every vector v of V , FrFunctionalFAF(f, v) is additive.

We say that f is additive w.r.t. first argument if and only if

(Def. 28) for every vector w of W , FrFunctionalSAF(f, w) is additive.
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We say that f is homogeneous w.r.t. second argument if and only if

(Def. 29) for every vector v of V , FrFunctionalFAF(f, v) is homogeneous.

We say that f is homogeneous w.r.t. first argument if and only if

(Def. 30) for every vector w of W , FrFunctionalSAF(f, w) is homogeneous.

Observe that NulFrForm(V,W ) is additive w.r.t. second argument and
NulFrForm(V,W ) is additive w.r.t. first argument and there exists an R-

form of V and W which is additive w.r.t. second argument and additive w.r.t.
first argument and NulFrForm(V,W ) is homogeneous w.r.t. second argument
and NulFrForm(V,W ) is homogeneous w.r.t. first argument.

There exists an R-form of V and W which is additive w.r.t. second argu-
ment, homogeneous w.r.t. second argument, additive w.r.t. first argument, and
homogeneous w.r.t. first argument.

An R-bilinear form of V and W is an additive w.r.t. first argument, homo-
geneous w.r.t. first argument, additive w.r.t. second argument, homogeneous
w.r.t. second argument R-form of V and W . Let f be an additive w.r.t. second
argument R-form of V and W and v be a vector of V . One can check that
FrFunctionalFAF(f, v) is additive.

Let f be an additive w.r.t. first argument R-form of V and W and w be
a vector of W . Observe that FrFunctionalSAF(f, w) is additive.

Let f be a homogeneous w.r.t. second argument R-form of V and W and v

be a vector of V . One can check that FrFunctionalFAF(f, v) is homogeneous.
Let f be a homogeneous w.r.t. first argument R-form of V and W and w be

a vector of W . Observe that FrFunctionalSAF(f, w) is homogeneous.
Let f be an R-functional of V and g be an additive R-functional of W .

Observe that FrFormFunctional(f, g) is additive w.r.t. second argument.
Let f be an additive R-functional of V and g be an R-functional of W . One

can check that FrFormFunctional(f, g) is additive w.r.t. first argument.
Let f be an R-functional of V and g be a homogeneous R-functional of W .

Observe that FrFormFunctional(f, g) is homogeneous w.r.t. second argument.
Let f be a homogeneous R-functional of V and g be an R-functional of W .

One can check that FrFormFunctional(f, g) is homogeneous w.r.t. first argu-
ment.

Let V be a non trivial vector space structure over ZR, W be a non empty
vector space structure over ZR, and f be an R-functional of V . One can verify
that FrFormFunctional(f, g) is non trivial and FrFormFunctional(f, g) is non
trivial.

Let F be an R-functional of V . We say that F is 0-preserving if and only if

(Def. 31) F (0V ) = 0RF .
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Let V be a Z-module. One can check that every R-functional of V which is
homogeneous is also 0-preserving.

Let V be a non empty vector space structure over ZR. Let us observe that
0FrFunctional(V ) is 0-preserving and there exists an R-functional of V which is
additive, homogeneous, and 0-preserving.

Let V be a non trivial, free Z-module. Note that there exists an R-functional
of V which is additive, homogeneous, non constant, and non trivial.

(74) Let us consider a non trivial, free Z-module V , and a non constant, 0-
preserving R-functional f of V . Then there exists a vector v of V such
that

(i) v 6= 0V , and

(ii) f(v) 6= 0RF .

Let V , W be non trivial, free Z-modules, f be a non constant, 0-preserving
R-functional of V , and g be a non constant, 0-preserving R-functional of W .
Note that FrFormFunctional(f, g) is non constant.

Let V be a non empty vector space structure over ZR.
An R-linear functional of V is an additive, homogeneous R-functional of

V . Let V , W be non trivial, free Z-modules. Observe that there exists an R-
form of V and W which is non trivial, non constant, additive w.r.t. second
argument, homogeneous w.r.t. second argument, additive w.r.t. first argument,
and homogeneous w.r.t. first argument.

Let V , W be non empty vector space structures over ZR and f , g be additive
w.r.t. first argument R-forms of V and W . Let us observe that f + g is additive
w.r.t. first argument. Let f , g be additive w.r.t. second argument R-forms of V
and W . One can check that f + g is additive w.r.t. second argument.

Let f be an additive w.r.t. first argument R-form of V and W and a be
an element of RF. Let us observe that a · f is additive w.r.t. first argument.

Let f be an additive w.r.t. second argument R-form of V and W . Note that
a · f is additive w.r.t. second argument.

Let f be an additive w.r.t. first argument R-form of V and W . Let us observe
that −f is additive w.r.t. first argument.

Let f be an additive w.r.t. second argument R-form of V and W . Let us
observe that −f is additive w.r.t. second argument.

Let f , g be additive w.r.t. first argument R-forms of V and W . Observe that
f − g is additive w.r.t. first argument.

Let f , g be additive w.r.t. second argument R-forms of V and W . One can
check that f − g is additive w.r.t. second argument.

Let f , g be homogeneous w.r.t. first argument R-forms of V and W . Observe
that f + g is homogeneous w.r.t. first argument.
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Let f , g be homogeneous w.r.t. second argument R-forms of V and W . One
can verify that f + g is homogeneous w.r.t. second argument.

Let f be a homogeneous w.r.t. first argument R-form of V and W and a be
an element of RF. Observe that a · f is homogeneous w.r.t. first argument.

Let f be a homogeneous w.r.t. second argument R-form of V and W . One
can check that a · f is homogeneous w.r.t. second argument.

Let f be a homogeneous w.r.t. first argument R-form of V and W . Observe
that −f is homogeneous w.r.t. first argument. Let f be a homogeneous w.r.t.
second argument R-form of V and W . Observe that −f is homogeneous w.r.t.
second argument.

Let f , g be homogeneous w.r.t. first argument R-forms of V and W . Let us
note that f − g is homogeneous w.r.t. first argument.

Let f , g be homogeneous w.r.t. second argument R-forms of V and W . One
can verify that f − g is homogeneous w.r.t. second argument.

(75) Let us consider non empty vector space structures V , W over ZR, vectors
v, u of V , a vector w of W , and an R-form f of V and W . If f is additive
w.r.t. first argument, then f(v + u,w) = f(v, w) + f(u,w). The theorem
is a consequence of (56).

(76) Let us consider non empty vector space structures V ,W over ZR, a vector
v of V , vectors u, w of W , and an R-form f of V and W . If f is additive
w.r.t. second argument, then f(v, u+w) = f(v, u) +f(v, w). The theorem
is a consequence of (55).

(77) Let us consider non empty vector space structures V , W over ZR, vectors
v, u of V , vectors w, t of W , and an additive w.r.t. first argument, additive
w.r.t. second argument R-form f of V and W . Then f(v + u,w + t) =
f(v, w)+f(v, t)+(f(u,w)+f(u, t)). The theorem is a consequence of (75)
and (76).

(78) Let us consider right zeroed, non empty vector space structures V , W
over ZR, an additive w.r.t. second argument R-form f of V and W , and
a vector v of V . Then f(v, 0W ) = 0ZR . The theorem is a consequence of
(76).

(79) Let us consider right zeroed, non empty vector space structures V , W
over ZR, an additive w.r.t. first argument R-form f of V and W , and
a vector w of W . Then f(0V , w) = 0ZR . The theorem is a consequence of
(75).

Let us consider non empty vector space structures V , W over ZR, a vector
v of V , a vector w of W , an element a of ZR, and an R-form f of V and W .
Now we state the propositions:

(80) If f is homogeneous w.r.t. first argument, then f(a · v, w) = a · f(v, w).
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The theorem is a consequence of (56).

(81) If f is homogeneous w.r.t. second argument, then f(v, a ·w) = a ·f(v, w).
The theorem is a consequence of (55).

(82) Let us consider add-associative, right zeroed, right complementable,
vector distributive, scalar distributive, scalar associative, scalar uni-
tal, non empty vector space structures V , W over ZR, a homogeneous
w.r.t. first argument R-form f of V and W , and a vector w of W . Then
f(0V , w) = 0RF . The theorem is a consequence of (80).

(83) Let us consider add-associative, right zeroed, right complementable,
vector distributive, scalar distributive, scalar associative, scalar uni-
tal, non empty vector space structures V , W over ZR, a homogeneous
w.r.t. second argument R-form f of V and W , and a vector v of V . Then
f(v, 0W ) = 0RF . The theorem is a consequence of (81).

(84) Let us consider Z-modules V , W , vectors v, u of V , a vector w of W ,
and an additive w.r.t. first argument, homogeneous w.r.t. first argument
R-form f of V and W . Then f(v−u,w) = f(v, w)−f(u,w). The theorem
is a consequence of (75) and (80).

(85) Let us consider Z-modules V , W , a vector v of V , vectors w, t of W , and
an additive w.r.t. second argument, homogeneous w.r.t. second argument
R-form f of V and W . Then f(v, w − t) = f(v, w)− f(v, t). The theorem
is a consequence of (76) and (81).

(86) Let us consider Z-modules V , W , vectors v, u of V , vectors w, t of W ,
and an R-bilinear form f of V and W . Then f(v − u,w − t) = f(v, w) −
f(v, t)−(f(u,w)−f(u, t)). The theorem is a consequence of (84) and (85).

(87) Let us consider add-associative, right zeroed, right complementable,
vector distributive, scalar distributive, scalar associative, scalar unital,
non empty vector space structures V , W over ZR, vectors v, u of V , vectors
w, t of W , elements a, b of ZR, and an R-bilinear form f of V and W .
Then f(v+a ·u,w+b ·t) = f(v, w)+b ·f(v, t)+(a ·f(u,w)+a ·(b ·f(u, t))).
The theorem is a consequence of (77), (81), and (80).

(88) Let us consider Z-modules V , W , vectors v, u of V , vectors w, t of
W , elements a, b of ZR, and an R-bilinear form f of V and W . Then
f(v − a · u,w − b · t) = f(v, w)− b · f(v, t)− (a · f(u,w)− a · (b · f(u, t))).
The theorem is a consequence of (86), (81), and (80).

(89) Let us consider right zeroed, non empty vector space structures V , W
over ZR, and an R-form f of V and W . Suppose f is additive w.r.t. second
argument or additive w.r.t. first argument. Then f is constant if and only
if for every vector v of V and for every vector w of W , f(v, w) = 0ZR . The
theorem is a consequence of (78) and (79).
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3. Matrices of Bilinear Form over Field of Real Numbers

Let V1, V2 be finite rank, free Z-modules, b1 be an ordered basis of V1, b2 be
an ordered basis of V2, and f be an R-bilinear form of V1 and V2. The functor
Bilinear(f, b1, b2) yielding a matrix over RF of dimension len b1×len b2 is defined
by

(Def. 32) for every natural numbers i, j such that i ∈ dom b1 and j ∈ dom b2 holds
it i,j = f(b1i, b2j).

Now we state the propositions:

(90) Let us consider a finite rank, free Z-module V , an R-linear functional F
of V , a finite sequence y of elements of V , a finite sequence x of elements
of ZR, and finite sequences X, Y of elements of RF. Suppose X = x and
len y = lenx and lenX = lenY and for every natural number k such that
k ∈ Seg lenx holds Y (k) = F (yk). Then X · Y = F (

∑
lmlt(x, y)).

Proof: Define P[finite sequence of elements of V ] ≡ for every finite se-
quence x of elements of ZR for every finite sequences X, Y of elements of
RF such that X = x and len $1 = lenx and lenX = lenY and for eve-
ry natural number k such that k ∈ Seg lenx holds Y (k) = F ($1k) holds
X ·Y = F (

∑
lmlt(x, $1)). For every finite sequence y of elements of V and

for every element w of V such that P[y] holds P[y a 〈w〉] by [4, (22), (39),
(59)], [3, (11)]. P[εα], where α is the carrier of V by [17, (43)]. For every
finite sequence p of elements of V , P[p] from [6, Sch. 2]. �

(91) Let us consider finite rank, free Z-modules V1, V2, an ordered basis b2 of
V2, an ordered basis b3 of V2, an R-bilinear form f of V1 and V2, a vector
v1 of V1, a vector v2 of V2, and finite sequences X, Y of elements of RF.
Suppose lenX = len b2 and lenY = len b2 and for every natural number k
such that k ∈ Seg len b2 holds Y (k) = f(v1, b2k) and X = v2 → b2. Then
Y ·X = f(v1, v2). The theorem is a consequence of (55) and (90).

(92) Let us consider finite rank, free Z-modules V1, V2, an ordered basis b1
of V1, an R-bilinear form f of V1 and V2, a vector v1 of V1, a vector v2 of
V2, and finite sequences X, Y of elements of RF. Suppose lenX = len b1
and lenY = len b1 and for every natural number k such that k ∈ Seg len b1
holds Y (k) = f(b1k, v2) and X = v1 → b1. Then X · Y = f(v1, v2). The
theorem is a consequence of (56) and (90).

(93) Every matrix over ZR is a matrix over RF.

Let M be a matrix over ZR. The functor Z2R(M) yielding a matrix over RF

is defined by the term

(Def. 33) M .
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Let n, m be natural numbers and M be a matrix over ZR of dimension n×m.
Note that the functor Z2R(M) yields a matrix over RF of dimension n×m. Let
n be a natural number and M be a square matrix over ZR of dimension n. Let
us note that the functor Z2R(M) yields a square matrix over RF of dimension
n. Now we state the propositions:

(94) Let us consider natural numbers m, l, n, a matrix S over ZR of dimension
l×m, a matrix T over ZR of dimension m×n, a matrix S1 over RF of
dimension l×m, and a matrix T1 over RF of dimension m×n. If S = S1

and T = T1 and 0 < l and 0 < m, then S · T = S1 · T1.
Proof: Reconsider S3 = S · T as a matrix over ZR of dimension l×n.
Reconsider S2 = S1 · T1 as a matrix over RF of dimension l×n. For every
natural numbers i, j such that 〈〈i, j〉〉 ∈ the indices of S3 holds S3i,j = S2i,j

by [8, (87)], [13, (2), (3), (37)]. �

(95) Let us consider a natural number n. Then In×nZR = In×nRF .

(96) Let us consider finite rank, free Z-modules V1, V2, an ordered basis b1 of
V1, an ordered basis b2 of V2, an ordered basis b3 of V2, and an R-bilinear
form f of V1 and V2. Suppose 0 < rankV1. Then Bilinear(f, b1, b3) =
Bilinear(f, b1, b2) · (Z2R(AutMt(idV2 , b3, b2)))T.
Proof: Set n = len b2. Reconsider I2 = AutMt(idV2 , b3, b2) as a square
matrix over ZR of dimension n. Reconsider M1 = Z2R(I2

T) as a square
matrix over RF of dimension n. Set M2 = Bilinear(f, b1, b2) ·M1. For every
natural numbers i, j such that 〈〈i, j〉〉 ∈ the indices of Bilinear(f, b1, b3)
holds (Bilinear(f, b1, b3))i,j = M2i,j by [8, (87)], [13, (1)], (91). �

(97) Let us consider finite rank, free Z-modules V1, V2, an ordered basis b1 of
V1, an ordered basis b2 of V2, an ordered basis b3 of V1, and an R-bilinear
form f of V1 and V2. Suppose 0 < rankV1. Then Bilinear(f, b3, b2) =
Z2R(AutMt(idV1 , b3, b1)) · Bilinear(f, b1, b2).
Proof: Set n = len b3. Reconsider I2 = AutMt(idV1 , b3, b1) as a square
matrix over ZR of dimension n. Reconsider M1 = Z2R(I2) as a square
matrix over RF of dimension n. Set M2 = M1 ·Bilinear(f, b1, b2). For every
natural numbers i, j such that 〈〈i, j〉〉 ∈ the indices of Bilinear(f, b3, b2)
holds (Bilinear(f, b3, b2))i,j = M2i,j by [8, (87)], [4, (1)], [13, (1)], (92). �

(98) Let us consider a finite rank, free Z-module V , ordered bases b1, b2
of V , and an R-bilinear form f of V and V . Suppose 0 < rankV . Then
Bilinear(f, b2, b2) = Z2R(AutMt(idV , b2, b1))·Bilinear(f, b1, b1)·(Z2R(AutMt
(idV , b2, b1)))T. The theorem is a consequence of (97) and (96).

Let us consider a finite rank, free Z-module V , ordered bases b1, b2 of V ,
and a square matrix M over RF of dimension rankV .

Let us assume that M = AutMt(idV , b1, b2). Now we state the propositions:
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(99) (i) DetM = 1 and DetMT = 1, or

(ii) DetM = −1 and DetMT = −1.
The theorem is a consequence of (94) and (95).

(100) |DetM | = 1. The theorem is a consequence of (99).

Let us consider a finite rank, free Z-module V , ordered bases b1, b2 of V ,
and an R-bilinear form f of V and V . Now we state the propositions:

(101) Det Bilinear(f, b2, b2) = Det Bilinear(f, b1, b1). The theorem is a conse-
quence of (98) and (99).

(102) |Det Bilinear(f, b2, b2)| = |Det Bilinear(f, b1, b1)|.
Let V be a finite rank, free Z-module, f be an R-bilinear form of V and V ,

and b be an ordered basis of V . The functor GramMatrix(f, b) yielding a square
matrix over RF of dimension rankV is defined by the term

(Def. 34) Bilinear(f, b, b).

The functor GramDet(f) yielding an element of RF is defined by

(Def. 35) for every ordered basis b of V , it = Det GramMatrix(f, b).

Let L be a Z-lattice. The functor InnerProductL yielding an R-form of L
and L is defined by the term

(Def. 36) the scalar product of L.

One can check that InnerProductL is additive w.r.t. first argument, homoge-
neous w.r.t. first argument, additive w.r.t. second argument, and homogeneous
w.r.t. second argument.

Let b be an ordered basis of L. The functor GramMatrix(b) yielding a square
matrix over RF of dimension dim(L) is defined by the term

(Def. 37) GramMatrix(InnerProductL, b).

The functor GramDet(L) yielding an element of RF is defined by the term

(Def. 38) GramDet(InnerProductL).

(103) Let us consider an integral Z-lattice L. Then InnerProductL is a bilinear
form of L, L.
Proof: For every object z such that z ∈ (the carrier of L)× (the carrier
of L) holds (InnerProductL)(z) ∈ the carrier of ZR. Reconsider f =
InnerProductL as a form of L, L. For every vector v of L, f(·, v) is addi-
tive by [2, (70)], (8). For every vector v of L, f(·, v) is homogeneous by [2,
(70)], (9). For every vector v of L, f(v, ·) is additive by [2, (69)], (8). For
every vector v of L, f(v, ·) is homogeneous by [2, (69)], (9). �

(104) Let us consider an integral Z-lattice L, and an ordered basis b of L. Then
GramMatrix(b) is a square matrix over ZR of dimension dim(L).
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Proof: For every natural numbers i, j such that 〈〈i, j〉〉 ∈ the indices of
GramMatrix(b) holds (GramMatrix(b))i,j ∈ the carrier of ZR by [8, (87)].
�

Let L be an integral Z-lattice. Note that GramDet(L) is integer.
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Summary. In this article we formalize in Mizar [5] product pre-measure
on product sets of measurable sets. Although there are some approaches to con-
struct product measure [22], [6], [9], [21], [25], we start it from σ-measure because
existence of σ-measure on any semialgebras has been proved in [15]. In this ap-
proach, we use some theorems for integrals.
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1. Preliminaries

Now we state the proposition:

(1) Let us consider non empty sets A, A1, A2, B, B1, B2. Then A1 × B1
misses A2 ×B2 and A×B = A1 ×B1 ∪ A2 ×B2 if and only if A1 misses
A2 and A = A1 ∪ A2 and B = B1 and B = B2 or B1 misses B2 and
B = B1 ∪B2 and A = A1 and A = A2.

Let C, D be non empty sets, F be a sequence of DC , and n be a natural
number. One can check that the functor F (n) yields a function from C into D.

(2) Let us consider sets X, Y, A, B, and objects x, y. Suppose x ∈ X and
y ∈ Y. Then χA,X(x) · χB,Y (y) = χA×B,X×Y (x, y).

Let A, B be sets. One can verify that χA,B is non-negative.

(3) Let us consider a non empty set X, a semialgebra S of sets of X, a pre-
measure P of S, an induced measure m of S and P , and an induced σ-
measure M of S and m. Then COM(M) is complete on COM(σ(the field
generated by S),M).
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The functor IntervalsR yielding a semialgebra of sets of R is defined by the
term

(Def. 1) the set of all I where I is an interval.

Now we state the propositions:

(4) Halflines ⊆ IntervalsR.

(5) Let us consider a subset I of R. If I is an interval, then I ∈ the Borel
sets.

(6) (i) σ(IntervalsR) = the Borel sets, and

(ii) σ(the field generated by IntervalsR) = the Borel sets.
The theorem is a consequence of (4) and (5).

2. Family of Semialgebras, Fields and Measures

Now we state the propositions:

(7) Let us consider sets X1, X2, a non empty family S1 of subsets of X1, and
a non empty family S2 of subsets of X2. Then the set of all a× b where a
is an element of S1, b is an element of S2 is a non empty family of subsets
of X1 ×X2.

(8) Let us consider sets X, Y, a family M of subsets of X with the empty
element, and a family N of subsets of Y with the empty element. Then
the set of all A × B where A is an element of M , B is an element of N
is a family of subsets of X × Y with the empty element. The theorem is
a consequence of (7).

(9) Let us consider a set X, and disjoint valued finite sequences O, T of
elements of X. Suppose

⋃
rngO misses

⋃
rng T . Then O a T is a disjoint

valued finite sequence of elements of X.

(10) Let us consider sets X1, X2, a semiring S1 of X1, and a semiring S2 of
X2. Then the set of all A×B where A is an element of S1, B is an element
of S2 is a semiring of X1 ×X2.

(11) Let us consider sets X1, X2, a semialgebra S1 of sets of X1, and a semial-
gebra S2 of sets of X2. Then the set of all A×B where A is an element of
S1, B is an element of S2 is a semialgebra of sets of X1×X2. The theorem
is a consequence of (10).

(12) Let us consider sets X1, X2, a field O of subsets of X1, and a field T

of subsets of X2. Then the set of all A × B where A is an element of O,
B is an element of T is a semialgebra of sets of X1 ×X2. The theorem is
a consequence of (11).
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Let n be a non zero natural number and X be a non-empty, n-element finite
sequence.

A family of semialgebras of X is an n-element finite sequence and is defined
by

(Def. 2) for every natural number i such that i ∈ Seg n holds it(i) is a semialgebra
of sets of X(i).

Let us observe that a family of semialgebras of X is a ∩-closed yielding
family of semirings of X. Now we state the proposition:

(13) Let us consider a non zero natural number n, a non-empty, n-element
finite sequence X, a family S of semialgebras of X, and a natural number
i. If i ∈ Seg n, then X(i) ∈ S(i).

Let us consider a non-empty, 1-element finite sequence X and a family S of
semialgebras of X. Now we state the propositions:

(14) the set of all
∏
〈s〉 where s is an element of S(1) is a semialgebra of

sets of the set of all 〈x〉 where x is an element of X(1). The theorem is
a consequence of (13).

(15) SemiringProduct(S) is a semialgebra of sets of
∏
X. The theorem is

a consequence of (14).

(16) Let us consider sets X1, X2, a semialgebra S1 of sets of X1, and a semial-
gebra S2 of sets of X2. Then the set of all s1 × s2 where s1 is an element
of S1, s2 is an element of S2 is a semialgebra of sets of X1 ×X2.

(17) Let us consider a non zero natural number n, a non-empty, n-element fini-
te sequenceX, and a family S of semialgebras ofX. Then SemiringProduct
(S) is a semialgebra of sets of

∏
X.

Proof: Define P[non zero natural number] ≡ for every non-empty, $1-
element finite sequence X for every family S of semialgebras of X,
SemiringProduct(S) is a semialgebra of sets of

∏
X. P[1]. For every non

zero natural number k, P[k] from [3, Sch. 10]. �

(18) Let us consider a non zero natural number n, a non-empty, n-element
finite sequence X8, a non-empty, 1-element finite sequence X1, a family
S4 of semialgebras of X8, and a family S1 of semialgebras of X1. Then
SemiringProduct(S4

a S1) is a semialgebra of sets of
∏

(X8
a X1). The

theorem is a consequence of (17), (16), and (13).

Let n be a non zero natural number and X be a non-empty, n-element finite
sequence.

A family of fields of X is an n-element finite sequence and is defined by

(Def. 3) for every natural number i such that i ∈ Seg n holds it(i) is a field of
subsets of X(i).
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Let S be a family of fields of X and i be a natural number. Assume i ∈ Seg n.
Observe that the functor S(i) yields a field of subsets of X(i).

Observe that a family of fields of X is a family of semialgebras of X.
Let us consider a non-empty, 1-element finite sequence X and a family S of

fields of X. Now we state the propositions:

(19) the set of all
∏
〈s〉 where s is an element of S(1) is a field of subsets of the

set of all 〈x〉 where x is an element of X(1). The theorem is a consequence
of (14).

(20) SemiringProduct(S) is a field of subsets of
∏
X. The theorem is a con-

sequence of (19).

Let n be a non zero natural number, X be a non-empty, n-element finite
sequence, and S be a family of fields of X.

A family of measures of S is an n-element finite sequence and is defined by

(Def. 4) for every natural number i such that i ∈ Seg n holds it(i) is a measure
on S(i).

3. Product of Two Measures

Let X1, X2 be sets, S1 be a field of subsets of X1, and S2 be a field of subsets
of X2. The functor MeasRect(S1, S2) yielding a semialgebra of sets of X1 ×X2

is defined by the term

(Def. 5) the set of all A×B where A is an element of S1, B is an element of S2.

Now we state the proposition:

(21) Let us consider a set X, and a field F of subsets of X. Then there exists
a semialgebra S of sets of X such that

(i) F = S, and

(ii) F = the field generated by S.

Let X1, X2 be sets, S1 be a field of subsets of X1, S2 be a field of sub-
sets of X2, m1 be a measure on S1, and m2 be a measure on S2. The functor
ProdpreMeas(m1,m2) yielding a non-negative, zeroed function from MeasRect
(S1, S2) into R is defined by

(Def. 6) for every element C of MeasRect(S1, S2), there exists an element A of
S1 and there exists an element B of S2 such that C = A×B and it(C) =
m1(A) ·m2(B).

Now we state the propositions:

(22) Let us consider sets X1, X2, a field S1 of subsets of X1, a field S2 of
subsets of X2, a measure m1 on S1, a measure m2 on S2, and sets A, B.
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Suppose A ∈ S1 and B ∈ S2. Then (ProdpreMeas(m1,m2))(A × B) =
m1(A) ·m2(B).

(23) Let us consider sets X1, X2, a non empty family S1 of subsets of X1,
a non empty family S2 of subsets of X2, a non empty family S of subsets
of X1 × X2, and a finite sequence H of elements of S. Suppose S =
the set of all A × B where A is an element of S1, B is an element of S2.
Then there exists a finite sequence F of elements of S1 and there exists
a finite sequence G of elements of S2 such that lenH = lenF and lenH =
lenG and for every natural number k such that k ∈ domH and H(k) 6= ∅
holds H(k) = F (k)×G(k).
Proof: For every natural number k such that k ∈ domH there exists
an element A of S1 and there exists an element B of S2 such that H(k) =
A × B. Define P[natural number, set] ≡ there exists an element B of S2

such that H($1) = $2×B. Consider F being a finite sequence of elements
of S1 such that domF = Seg lenH and for every natural number k such
that k ∈ Seg lenH holds P[k, F (k)] from [4, Sch. 5]. Define Q[natural
number, set] ≡ there exists an element A of S1 such that H($1) = A× $2.
For every natural number k such that k ∈ Seg lenH there exists an element
B of S2 such that Q[k,B]. Consider G being a finite sequence of elements
of S2 such that domG = Seg lenH and for every natural number k such
that k ∈ Seg lenH holds Q[k,G(k)] from [4, Sch. 5]. �

(24) Let us consider a set X, a non empty, semi-diff-closed, ∩-closed family
S of subsets of X, and elements E1, E2 of S. Then there exist disjoint
valued finite sequences O, T , F of elements of S such that

(i)
⋃

rngO = E1 \ E2, and

(ii)
⋃

rng T = E2 \ E1, and

(iii)
⋃

rngF = E1 ∩ E2, and

(iv) (O a T ) a F is a disjoint valued finite sequence of elements of S.

The theorem is a consequence of (9).

(25) Let us consider sets X1, X2, a field S1 of subsets of X1, a field S2

of subsets of X2, a measure m1 on S1, a measure m2 on S2, and ele-
ments E1, E2 of MeasRect(S1, S2). Suppose E1 misses E2 and E1 ∪ E2 ∈
MeasRect(S1, S2). Then (ProdpreMeas(m1,m2))(E1 ∪ E2) =
(ProdpreMeas(m1,m2))(E1) + (ProdpreMeas(m1,m2))(E2). The theorem
is a consequence of (1) and (22).

(26) Let us consider a non empty set X, a non empty family S of subsets
of X, a function f from N into S, and a sequence F of partial functions
from X into R. Suppose f is disjoint valued and for every natural number
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n, F (n) = χ
f(n),X . Let us consider an object x. Suppose x ∈ X. Then

χ⋃
f,X(x) = (lim(

∑κ
α=0 F (α))κ∈N)(x).

(27) Let us consider a non empty set X, a σ-field S of subsets of X, a σ-
measure M on S, a partial function f from X to R, and a real number r.
Suppose dom f ∈ S and 0 ¬ r and for every object x such that x ∈ dom f

holds f(x) = r. Then
∫
f dM = r ·M(dom f).

Let us consider a non empty set X, a σ-field S of subsets of X, a σ-measure
M on S, a partial function f from X to R, and an element A of S. Now we
state the propositions:

(28) Suppose there exists an element E of S such that E = dom f and f is
measurable on E and for every object x such that x ∈ dom f \ A holds
f(x) = 0 and f is non-negative. Then

∫
f dM =

∫
f�AdM . The theorem

is a consequence of (27).

(29) If f is integrable on M and for every object x such that x ∈ dom f \ A
holds f(x) = 0, then

∫
f dM =

∫
f�AdM . The theorem is a consequence

of (27).

(30) Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1, a σ-
field S2 of subsets of X2, a σ-measure M2 on S2, a function D from N into
S1, a function E from N into S2, an element A of S1, an element B of S2,
a sequence F of partial functions from X2 into R, a sequence R of RX1 , and
an element x of X1. Suppose for every natural number n, R(n) = χ

D(n),X1
and for every natural number n, F (n) = R(n)(x) · χE(n),X2 and for every
natural number n, E(n) ⊆ B. Then there exists a sequence I of extended
reals such that

(i) for every natural number n, I(n) = M2(E(n)) · χD(n),X1(x), and

(ii) I is summable, and

(iii)
∫

lim(
∑κ
α=0 F (α))κ∈N dM2 =

∑
I.

Proof: For every natural number n, dom(F (n)) = X2. Reconsider S3 =
X2 as an element of S2. For every natural number n and for every set y
such that y ∈ E(n) holds F (n)(y) = 0 or F (n)(y) = 1 by [10, (3)], [18,
(1)], [12, (39)]. For every natural number n and for every set y such that
y /∈ E(n) holds F (n)(y) = 0. For every natural number n, F (n) is non-
negative and F (n) is measurable on B by [8, (51)], [17, (37)], [18, (29)].
For every element y of X2 such that y ∈ B holds F#y is summable by [8,
(51), (39)], [19, (16)], [29, (37)].

Consider I being a sequence of extended reals such that for eve-
ry natural number n, I(n) =

∫
F (n)�B dM2 and I is summable and∫

lim(
∑κ
α=0 F (α))κ∈N�B dM2 =

∑
I. For every natural number n, I(n) =
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M2(E(n)) · χD(n),X1(x) by [28, (61)], [10, (47), (49)], [18, (29)]. For eve-
ry natural number n, F (n) is measurable on S3 by [18, (29)], [17, (37)].
For every natural number n, F (n) is without −∞. For every element y
of X2 such that y ∈ S3 holds (

∑κ
α=0 F (α))κ∈N#y is convergent by [19,

(38)]. For every object y such that y ∈ dom lim(
∑κ
α=0 F (α))κ∈N \B holds

(lim(
∑κ
α=0 F (α))κ∈N)(y) = 0 by [19, (43)], [16, (52)]. For every object y

such that y ∈ dom lim(
∑κ
α=0 F (α))κ∈N holds (lim(

∑κ
α=0 F (α))κ∈N)(y)  0

by [19, (36)], [8, (51)], [19, (10), (38)]. �

(31) Let us consider a non empty set X, a σ-field S of subsets of X, an element
A of S, and an extended real number p. Then X 7−→ p is measurable on A.
Proof: For every real number r, A ∩ GTE-dom(X 7−→ p, r) ∈ S by [26,
(7)], [7, (7)]. �

Let A, X be sets. The functor χA,X yielding a function from X into R is
defined by

(Def. 7) for every object x such that x ∈ X holds if x ∈ A, then it(x) = +∞ and
if x /∈ A, then it(x) = 0.

Now we state the proposition:

(32) Let us consider a non empty set X, a σ-field S of subsets of X, and
elements A, B of S. Then χA,X is measurable on B.

Let X, A be sets. Let us observe that χA,X is non-negative.

(33) Let us consider a non empty set X, a σ-field S of subsets of X, a σ-
measure M on S, and an element A of S. Then

(i) if M(A) 6= 0, then
∫
χA,X dM = +∞, and

(ii) if M(A) = 0, then
∫
χA,X dM = 0.

Proof: Reconsider X3 = X as an element of S. Reconsider X2 = X3\A as
an element of S. Reconsider F = χA,X�A as a partial function from X to
R. Reconsider O = χA,X�X2 as a partial function from X to R. Reconsider
T = χA,X�(X2 ∪ A) as a partial function from X to R.

∫
F dM = 0. O is

measurable on X2. For every element x of X such that x ∈ dom(χA,X�X2)
holds (χA,X�X2)(x) = 0 by [10, (47)].

∫
T dM =

∫
O dM + 0. �

(34) Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1,
a σ-field S2 of subsets of X2, a σ-measure M1 on S1, a σ-measure M2

on S2, and a disjoint valued function K from N into MeasRect(S1, S2).
Suppose

⋃
K ∈ MeasRect(S1, S2). Then (ProdpreMeas(M1,M2))(

⋃
K) =∑

(ProdpreMeas(M1,M2) ·K).
Proof: Consider A being an element of S1, B being an element of S2 such
that

⋃
K = A×B. Consider P being an element of S1, Q being an element

of S2 such that
⋃
K = P×Q and (ProdpreMeas(M1,M2))(

⋃
K) = M1(P )·
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M2(Q). Define F(object) = χ
K($1),X1×X2 . Consider X6 being a sequence of

partial functions from X1×X2 into R such that for every natural number
n, X6(n) = F(n) from [24, Sch. 1]. Define P[natural number, object] ≡
$2 = π1(K($1)). For every element i of N, there exists an element A of
S1 such that P[i, A] by [2, (9)], [7, (7)]. Consider D being a function from
N into S1 such that for every element i of N, P[i,D(i)] from [11, Sch. 3].
Define Q[natural number, object] ≡ $2 = π2(K($1)). For every element i
of N, there exists an element B of S2 such that Q[i, B] by [2, (9)], [7, (7)].

Consider E being a function from N into S2 such that for every
element i of N, Q[i, E(i)] from [11, Sch. 3]. Define O(object) = χ

D($1),X1 .
Consider X7 being a sequence of partial functions from X1 into R such
that for every natural number n, X7(n) = O(n) from [24, Sch. 1]. Define
T (object) = χ

E($1),X2 . Consider X4 being a sequence of partial functions
from X2 into R such that for every natural number n, X4(n) = T (n) from
[24, Sch. 1]. For every natural number n and for every objects x, y such
that x ∈ X1 and y ∈ X2 holds X6(n)(x, y) = X7(n)(x) ·X4(n)(y) by [14,
(87)], [2, (9)], (2). (ProdpreMeas(M1,M2))(

⋃
K) = M1(A) ·M2(B) by [14,

(110)]. Reconsider C1 = χA×B,X1×X2 as a function from X1 ×X2 into R.
For every element x of X1, M2(B) ·χA,X1(x) =

∫
curry(C1, x) dM2 by (2),

[13, (5)], [19, (14)], [23, (4)]. For every object n such that n ∈ N holds
X7(n) ∈ RX1 by [12, (39)]. Reconsider R1 = X7 as a sequence of RX1 . For
every natural number n, D(n) ⊆ A and E(n) ⊆ B by [2, (10)], [1, (1)].
For every element x of X1, there exists a sequence X5 of partial functions
from X2 into R and there exists a sequence I of extended reals such that
for every natural number n, X5(n) = R1(n)(x) · χE(n),X2 and for every
natural number n, I(n) = M2(E(n)) · χD(n),X1(x) and I is summable and∫

lim(
∑κ
α=0X5(α))κ∈N dM2 =

∑
I by [13, (45)], (30).

Reconsider L1 = lim(
∑κ
α=0X6(α))κ∈N as a function from X1 ×

X2 into R. For every element x of X1 and for every element y of X2,
(curry(C1, x))(y) = (curry(L1, x))(y). For every element x ofX1, curry(C1,

x) = curry(L1, x). For every element x of X1, M2(B) · χA,X1(x) =
∫

curry
(L1, x) dM2. For every element x of X1, there exists a sequence I of
extended reals such that for every natural number n, I(n) = M2(E(n)) ·
χ
D(n),X1(x) and M2(B) · χA,X1(x) =

∑
I by [8, (51)], [19, (38), (29),

(30)]. Define R[natural number, object] ≡ if M2(E($1)) = +∞, then
$2 = χD($1),X1 and if M2(E($1)) 6= +∞, then there exists a real number
m2 such that m2 = M2(E($1)) and $2 = m2·χD($1),X1 . For every element n
of N, there exists an element y of X1→̇R such that R[n, y] by [13, (45)], [8,
(51)]. Consider F1 being a function from N into X1→̇R such that for every
element n of N, R[n, F1(n)] from [11, Sch. 3]. For every natural number
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n, dom(F1(n)) = X1. For every natural number n, F1(n) is non-negative
by [8, (51)]. For every natural numbers n, m, dom(F1(n)) = dom(F1(m)).

Reconsider X3 = X1 as an element of S1. For every natural num-
ber n, F1(n) is non-negative and F1(n) is measurable on A and F1(n)
is measurable on X3 by (32), [18, (29)], [17, (37)]. For every element x
of X1 such that x ∈ A holds F1#x is summable by [8, (51), (39)], [20,
(2)]. Consider J being a sequence of extended reals such that for eve-
ry natural number n, J(n) =

∫
F1(n)�AdM1 and J is summable and∫

lim(
∑κ
α=0 F1(α))κ∈N�AdM1 =

∑
J . For every natural number n, J(n) =∫

F1(n) dM1. Reconsider X3 = X1 as an element of S1. For every element
n of N, J(n) = (ProdpreMeas(M1,M2) ·K)(n) by (33), [8, (51)], [18, (29)],
[16, (86), (88)]. For every element x of X1, (lim(

∑κ
α=0 F1(α))κ∈N)(x)  0

by [19, (38)], [29, (37), (23)], [8, (51)]. For every natural number n, F1(n)
is measurable on X3 and F1(n) is without −∞. For every object x such
that x ∈ dom lim(

∑κ
α=0 F1(α))κ∈N \A holds (lim(

∑κ
α=0 F1(α))κ∈N)(x) = 0

by [19, (30), (32)], [16, (52)].
∫

lim(
∑κ
α=0 F1(α))κ∈N dM1 =∫

lim(
∑κ
α=0 F1(α))κ∈N�AdM1.

∫
lim(
∑κ
α=0 F1(α))κ∈N dM1 = M1(A)·M2(B)

by [11, (63)], [19, (30), (32)], [8, (51)]. �

(35) Let us consider a without −∞ finite sequence f of elements of R, and
a without −∞ sequence s of extended reals. Suppose for every object n
such that n ∈ dom f holds f(n) = s(n).
Then

∑
f + s(0) = (

∑κ
α=0 s(α))κ∈N(len f).

Proof: Consider F being a sequence of R such that
∑
f = F (len f)

and F (0) = 0 and for every natural number i such that i < len f holds
F (i+ 1) = F (i) + f(i+ 1). Define P[natural number] ≡ if $1 ¬ len f , then
F ($1) + s(0) = (

∑κ
α=0 s(α))κ∈N($1) and F ($1) 6= −∞. For every natural

number k such that P[k] holds P[k + 1] by [3, (11)], [27, (25)], [16, (10)],
[3, (13)]. For every natural number k, P[k] from [3, Sch. 2]. �

(36) Let us consider a non-negative finite sequence f of elements of R, and
a sequence s of extended reals. Suppose for every object n such that n ∈
dom f holds f(n) = s(n) and for every element n of N such that n /∈ dom f

holds s(n) = 0. Then

(i)
∑
f =
∑
s, and

(ii)
∑
f =
∑
s.

Proof: For every object n such that n ∈ dom s holds 0 ¬ s(n) by [8,
(51)].

∑
f + s(0) = (

∑κ
α=0 s(α))κ∈N(len f). Define P[natural number] ≡

(
∑κ
α=0 s(α))κ∈N(len f) = ((

∑κ
α=0 s(α))κ∈N ↑ len f)($1). For every natural

number k such that P[k] holds P[k + 1] by [27, (25)]. For every natural
number k, P[k] from [3, Sch. 2]. �
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(37) Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1, a σ-
field S2 of subsets of X2, a σ-measure M1 on S1, a σ-measure M2 on S2,
and a disjoint valued finite sequence F of elements of MeasRect(S1, S2).
Suppose

⋃
F ∈ MeasRect(S1, S2). Then (ProdpreMeas(M1,M2))(

⋃
F ) =∑

(ProdpreMeas(M1,M2) · F ).
Proof: Set S = MeasRect(S1, S2). Define P[object, object] ≡ if $1 ∈
domF , then $2 = F ($1) and if $1 /∈ domF , then $2 = ∅. For every
element n of N, there exists an element y of S such that P[n, y] by [10, (3)].
Consider G being a function from N into S such that for every element
n of N, P[n,G(n)] from [11, Sch. 3]. For every object x such that x /∈
domF holds G(x) = ∅. For every objects x, y such that x 6= y holds G(x)
misses G(y). (ProdpreMeas(M1,M2))(

⋃
F ) =

∑
(ProdpreMeas(M1,M2) ·

G). For every object n such that n ∈ dom(ProdpreMeas(M1,M2)·F ) holds
(ProdpreMeas(M1,M2) · F )(n) = (ProdpreMeas(M1,M2) · G)(n) by [10,
(11), (12), (13)]. For every element n of N such that n /∈ dom(ProdpreMeas
(M1,M2) · F ) holds (ProdpreMeas(M1,M2) · G)(n) = 0 by [10, (3), (11),
(13)]. �

(38) Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1,
a σ-field S2 of subsets of X2, a σ-measure M1 on S1, and a σ-measure M2

on S2. Then ProdpreMeas(M1,M2) is a pre-measure of MeasRect(S1, S2).
The theorem is a consequence of (37) and (34).

Let X1, X2 be non empty sets, S1 be a σ-field of subsets of X1, S2 be a σ-
field of subsets of X2, M1 be a σ-measure on S1, and M2 be a σ-measure on S2.
Let us observe that the functor ProdpreMeas(M1,M2) yields a pre-measure of
MeasRect(S1, S2).
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Summary. In this article, conservation rules of the direct sum decomposi-
tion of groups are mainly discussed. In the first section, we prepare miscellaneous
definitions and theorems for further formalization in Mizar [5]. In the next three
sections, we formalized the fact that the property of direct sum decomposition is
preserved against the substitutions of the subscript set, flattening of direct sum,
and layering of direct sum, respectively. We referred to [14], [13] [6] and [11] in
the formalization.
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1. Preliminaries

Let I, J be non empty sets, a be a function from I into J , and F be a multi-
plicative magma family of J . Observe that the functor F ·a yields a multiplicative
magma family of I. Let F be a group family of J . Let us observe that the functor
F · a yields a group family of I. Let G be a group and F be a subgroup family
of J and G. The functor F · a yielding a subgroup family of I and G is defined
by the term

(Def. 1) F · a.
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The scheme Sch1 deals with a set A and a 1-sorted structure B and a unary
functor F yielding a set and states that

(Sch. 1) There exists a function f such that dom f = A and for every element x
of B such that x ∈ A holds f(x) = F(x).

Let I be a set. Let us note that there exists a many sorted set indexed by I
which is non-empty and disjoint valued.

Now we state the propositions:

(1) Let us consider a non-empty, disjoint valued function f . If
⋃
f is finite,

then dom f is finite.
Proof: For every objects x, y such that x, y ∈ dom f and f(x) = f(y)
holds x = y by [7, (3)]. �

(2) Let us consider non empty sets X, Y, sets X0, Y0, and a function f from
X into Y. Suppose f is bijective and rng(f�X0) = Y0. Then (f�X0)−1 =
f−1�Y0.
Proof: For every object x such that x ∈ dom(f−1�Y0) holds (f−1�Y0)(x) =
(f�X0)−1(x) by [18, (62)], [7, (49), (33)], [18, (59)]. �

2. Conservation Rule of Direct Sum Decomposition for
Substitution of Subscript Set

Now we state the proposition:

(3) Let us consider non empty sets I, J , a function a from I into J , a multipli-
cative magma family F of J , and an element x of

∏
F . Then x·a ∈

∏
(F ·a).

Proof: Reconsider y = x·a as a many sorted set indexed by I. Reconsider
z = the support of F ·a as a many sorted set indexed by I. For every object
i such that i ∈ I holds y(i) ∈ z(i) by [7, (13)]. �

Let I, J be non empty sets, a be a function from I into J , and F be a multi-
plicative magma family of J . The functor Trans

∏
(F, a) yielding a function from∏

F into
∏

(F · a) is defined by

(Def. 2) for every element x of
∏
F , it(x) = x · a.

Now we state the proposition:

(4) Let us consider non empty sets I, J , a function a from I into J , and
a multiplicative magma family F of J . Then Trans

∏
(F, a) is multiplicati-

ve.
Proof: Reconsider f = Trans

∏
(F, a) as a function from

∏
F into

∏
(F ·a).

For every elements x, y of
∏
F , f(x · y) = f(x) · f(y) by (3), [7, (13)], [10,

(1)], [18, (27)]. �
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Let I, J be non empty sets, a be a function from I into J , and F be a group
family of J . Let us observe that the functor Trans

∏
(F, a) yields a homomor-

phism from
∏
F to

∏
(F · a). Now we state the propositions:

(5) Let us consider non empty sets I, J , a function a from I into J , a mul-
tiplicative magma family F of J , and an element y of

∏
(F · a). If a is

bijective, then y · a−1 ∈
∏
F .

Proof: Set x = y · a−1. For every object j such that j ∈ J holds x(j) ∈
(the support of F )(j) by [7, (32), (13)]. �

(6) Let us consider non empty sets I, J , a function a from I into J , and
functions x, y. Suppose domx = I and dom y = J and a is bijective. Then
x = y · a if and only if y = x · a−1.

(7) Let us consider non empty sets I, J , a multiplicative magma family F

of J , and a function a from I into J . Suppose a is bijective. Then

(i) dom Trans
∏

(F, a) = Ω∏F , and

(ii) rng Trans
∏

(F, a) = Ω∏(F ·a).
The theorem is a consequence of (5) and (6).

(8) Let us consider non empty sets I, J , a function a from I into J , and
a multiplicative magma family F of J . If a is bijective, then Trans

∏
(F, a)

is bijective.
Proof: Reconsider f = Trans

∏
(F, a) as a function from

∏
F into

∏
(F ·a).

dom f = Ω∏F and rng f = Ω∏(F ·a). For every objects x, y such that x,
y ∈ dom f and f(x) = f(y) holds x = y by [7, (86)]. �

Let us consider non empty sets I, J , a function a from I into J , a group
family F of J , and a function x. Now we state the propositions:

(9) If a is one-to-one, then a◦(support(x · a, F · a)) ⊆ support(x, F ).
Proof: For every object j such that j ∈ a◦(support(x · a, F · a)) holds
j ∈ support(x, F ) by [7, (13)]. �

(10) If a is onto, then support(x, F ) ⊆ a◦(support(x · a, F · a)).
Proof: For every object j such that j ∈ support(x, F ) holds
j ∈ a◦(support(x · a, F · a)) by [8, (11)], [7, (13)]. �

(11) If a is one-to-one, then if x ∈ sumF , then x ·a ∈ sum(F ·a). The theorem
is a consequence of (3) and (9).

(12) If a is bijective, then x ∈ sumF iff x · a ∈ sum(F · a) and domx = J .
The theorem is a consequence of (11).

Let I, J be non empty sets, a be a function from I into J , and F be a group
family of J . Assume a is bijective. The functor Trans

∑
(F, a) yielding a function

from sumF into sum(F · a) is defined by the term
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(Def. 3) Trans
∏

(F, a)� sumF .

Now we state the proposition:

(13) Let us consider groups G, H, a subgroup H0 of H, and a homomorphism
f from G to H. Suppose rng f ⊆ ΩH0 . Then f is a homomorphism from
G to H0.
Proof: Reconsider g = f as a function from G into H0. For every elements
a, b of G, g(a · b) = g(a) · g(b) by [16, (43)]. �

Let I, J be non empty sets, a be a function from I into J , and F be a group
family of J . Assume a is bijective. Let us observe that the functor Trans

∑
(F, a)

yields a homomorphism from sumF to sum(F ·a). Now we state the propositions:

(14) Let us consider non empty sets I, J , a function a from I into J , and
a group family F of J . If a is bijective, then Trans

∑
(F, a) is bijective.

Proof: Reconsider f = Trans
∏

(F, a) as a homomorphism from
∏
F to∏

(F · a). Reconsider g = Trans
∑

(F, a) as a homomorphism from sumF

to sum(F · a). f is bijective. For every object y such that y ∈ Ωsum(F ·a)
holds y ∈ rng g by [16, (42)], (5), (6), (12). �

(15) Let us consider a group G, non empty sets I, J , a direct sum components
F of G and J , and a function a from I into J . If a is bijective, then F · a
is a direct sum components of G and I. The theorem is a consequence of
(14).

(16) Let us consider a non empty set I, and a group G. Then every internal
direct sum components of G and I is a subgroup family of I and G.

(17) Let us consider non empty sets I, J , a group G, a function x from I into
G, a function y from J into G, and a function a from I into J . Suppose a
is onto and x = y · a. Then support y = a◦(supportx).

(18) Let us consider non empty sets I, J , a commutative group G, a finite-
support function x from I into G, a finite-support function y from J into
G, and a function a from I into J . If a is bijective and x = y · a, then∏
x =
∏
y.

Proof: Reconsider S1 = supportx as a finite set. Reconsider S2 = support
y as a finite set. Reconsider s1 = CFS(S1) as a finite sequence of elements
of S1. Reconsider s2 = CFS(S2) as a finite sequence of elements of S2.
Reconsider x1 = x�S1 as a function from S1 into G. Consider x2 being
a finite sequence of elements of G such that

∏
x1 =

∏
x2 and x2 = x1 · s1.

Reconsider y1 = y�S2 as a function from S2 into G. Consider y2 being
a finite sequence of elements of G such that

∏
y1 =

∏
y2 and y2 = y1 · s2.

S2 = a◦S1. S1 = S2 by [1, (66)], [8, (25)], [17, (63)], [8, (17), (29)]. Re-
consider n = S1 as a natural number. Reconsider a1 = a�S1 as a function
from S1 into J . Reconsider a2 = s2

−1 as a function from S2 into Seg n.
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Reconsider p = a2 ·a1 · s1 as a function. If S2 is not empty, then x2 = y2 ·p
by [18, (27)], [7, (3), (12), (47)]. �

(19) Let us consider non empty sets I, J , a group G, a finite-support function
x from I into G, a finite-support function y from J into G, and a function a
from I into J . Suppose a is bijective and x = y·a and for every elements i, j
of I, x(i)·x(j) = x(j)·x(i). Then

∏
x =
∏
y. The theorem is a consequence

of (18).

(20) Let us consider a group G, non empty sets I, J , an internal direct sum
components F of G and J , and a function a from I into J . Suppose a is
bijective. Then F · a is an internal direct sum components of G and I.
Proof: Reconsider E = F · a as a direct sum components of G and I.
For every element i of I, E(i) is a subgroup of G by [7, (13)]. There exists
a homomorphism h from sumE to G such that h is bijective and for
every finite-support function x from I into G such that x ∈ sumE holds
h(x) =

∏
x by (14), [17, (62), (63)], [12, (25)]. �

3. Conservation Rule of Direct Sum Decomposition for Flattening

Let I be a non empty set and J be a many sorted set indexed by I.
A J-indexed family of multiplicative magma families is a many sorted set

indexed by I and is defined by

(Def. 4) for every element i of I, it(i) is a multiplicative magma family of J(i).

A J-indexed family of group families is a J-indexed family of multiplicative
magma families and is defined by

(Def. 5) for every element i of I, it(i) is a group family of J(i).

Let N be a J-indexed family of multiplicative magma families and i be
an element of I. One can verify that the functor N(i) yields a multiplicative
magma family of J(i). Let N be a J-indexed family of group families. Observe
that the functor N(i) yields a group family of J(i). Let J be a disjoint valued
many sorted set indexed by I and F be a J-indexed family of group families.
One can verify that the functor

⋃
F yields a group family of

⋃
J . Now we state

the proposition:

(21) Let us consider a non empty set I, a disjoint valued many sorted set J
indexed by I, a J-indexed family of group families F , an element j of I,
and an object i. If i ∈ J(j), then (

⋃
F )(i) = F (j)(i).

Let I be a non empty set, J be a many sorted set indexed by I, and F be a J-
indexed family of multiplicative magma families. The functor ProdBundle(F )
yielding a multiplicative magma family of I is defined by
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(Def. 6) for every element i of I, it(i) =
∏

(F (i)).

Let F be a J-indexed family of group families.
Note that the functor ProdBundle(F ) yields a group family of I. The functor

SumBundle(F ) yielding a group family of I is defined by

(Def. 7) for every element i of I, it(i) = sum(F (i)).

Let F be a J-indexed family of multiplicative magma families. The functor
d
∏
F yielding a multiplicative magma is defined by the term

(Def. 8)
∏

ProdBundle(F ).

Let J be a non-empty many sorted set indexed by I. One can check that
d
∏
F is non empty and constituted functions.
Let F be a J-indexed family of group families. Observe that d

∏
F is group-

like and associative.
The functor d

∑
F yielding a group is defined by the term

(Def. 9) sum SumBundle(F ).

Note that d
∑
F is non empty and constituted functions.

Let us consider a non empty set I and group families F1, F2 of I.
Let us assume that for every element i of I, F1(i) is a subgroup of F2(i).

Now we state the propositions:

(22)
∏
F1 is a subgroup of

∏
F2.

Proof: For every object x such that x ∈ Ω∏F1 holds x ∈ Ω∏F2 . Re-
consider f2 = (the multiplication of

∏
F2) � Ω∏F1 as a function from

Ω∏F1 ×Ω∏F1 into Ω∏F2 . Reconsider f1 = the multiplication of
∏
F1 as

a function from Ω∏F1 × Ω∏F1 into Ω∏F2 . For every sets x, y such that
x, y ∈ Ω∏F1 holds f1(x, y) = f2(x, y) by [10, (1)], [16, (43)], [7, (49)], [9,
(87)]. �

(23) sumF1 is a subgroup of sumF2.
Proof: For every object x such that x ∈ ΩsumF1 holds x ∈ ΩsumF2 by
[16, (40)], (22), [16, (42), (44)].

∏
F1 is a subgroup of

∏
F2. �

(24) Let us consider a non empty set I, a non-empty many sorted set J
indexed by I, and a J-indexed family of group families F . Then d

∑
F is

a subgroup of d
∏
F . The theorem is a consequence of (22).

Let I be a non empty set, J be a non-empty, disjoint valued many sorted
set indexed by I, and F be a J-indexed family of group families. One can verify
that the functor d

∑
F yields a subgroup of d

∏
F . The functor dProd2Prod(F )

yielding a homomorphism from d
∏
F to

∏⋃
F is defined by

(Def. 10) for every element x of d
∏
F and for every element i of I, x(i) = it(x)�J(i).

Now we state the proposition:
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(25) Let us consider a non empty set I, a non-empty, disjoint valued ma-
ny sorted set J indexed by I, a J-indexed family of group families F ,
an element y of

∏⋃
F , and an element i of I. Then y�J(i) ∈

∏
(F (i)).

Proof: Set x = y�J(i). Set z = the support of F (i). For every object j
such that j ∈ J(i) holds x(j) ∈ z(j) by [7, (49), (1)]. �

Let I be a non empty set, J be a non-empty, disjoint valued many sorted
set indexed by I, and F be a J-indexed family of group families. Note that
dProd2Prod(F ) is bijective.

The functor Prod2dProd(F ) yielding a homomorphism from
∏⋃

F to d
∏
F

is defined by the term

(Def. 11) (dProd2Prod(F ))−1.

Now we state the proposition:

(26) Let us consider a non empty set I, a non-empty, disjoint valued many sor-
ted set J indexed by I, a J-indexed family of group families F , an element
x of
∏⋃

F , and an element i of I. Then x�J(i) = (Prod2dProd(F ))(x)(i).

Let I be a non empty set, J be a non-empty, disjoint valued many sorted
set indexed by I, and F be a J-indexed family of group families. Note that
Prod2dProd(F ) is bijective.

(27) Let us consider a non empty set I, a non-empty, disjoint valued many
sorted set J indexed by I, and a J-indexed family of group families F .
Then Prod2dProd(F ) = (dProd2Prod(F ))−1.

Let I be a non empty set, J be a non-empty, disjoint valued many sorted set
indexed by I, F be a J-indexed family of group families, and x be a function.
The functor rsupport(x, F ) yielding a disjoint valued many sorted set indexed
by I is defined by

(Def. 12) for every element i of I, it(i) = support(x�J(i), F (i)).

Now we state the propositions:

(28) Let us consider a non empty set I, a non-empty, disjoint valued many
sorted set J indexed by I, a J-indexed family of group families F , and
a function x. Then support(x,

⋃
F ) =

⋃
rsupport(x, F ).

Proof: Set y = rsupport(x, F ). For every object j, j ∈ support(x,
⋃
F )

iff j ∈
⋃
y by (21), [7, (49), (3)], [9, (74)]. �

(29) Let us consider a non empty set I, a non-empty, disjoint valued many
sorted set J indexed by I, a J-indexed family of group families F , and
functions x, y, z. Suppose z ∈ d

∏
F and x = (dProd2Prod(F ))(z). Then

(i) rsupport(x, F )� support(z,SumBundle(F )) is a non-empty, disjoint
valued many sorted set indexed by support(z,SumBundle(F )), and

(ii) support(x,
⋃
F ) =

⋃
(rsupport(x, F )� support(z, SumBundle(F ))).
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Proof: Set s1 = rsupport(x, F ). Set s2 = support(z,SumBundle(F )). Set
f = s1�s2. For every objects s, t such that s 6= t holds f(s) misses f(t) by
[7, (47)]. ∅ /∈ rng f by [7, (47)], [10, (5)], [16, (44)]. support(x,

⋃
F ) =

⋃
s1.

For every object k such that k ∈ support(x,
⋃
F ) holds k ∈

⋃
(s1�s2) by

[10, (6)], [16, (44)], [18, (57)], [7, (47), (3)]. �

(30) Let us consider a non empty set I, a non-empty, disjoint valued many
sorted set J indexed by I, a J-indexed family of group families F , and
a function y. Suppose y ∈ sum

⋃
F . Then there exists a function x such

that

(i) y = (dProd2Prod(F ))(x), and

(ii) x ∈ d
∑
F .

Proof: Consider x being an element of Ωd
∏
F such that y = (dProd2Prod

(F ))(x). Set s1 = rsupport(y, F ). support(y,
⋃
F ) =

⋃
s1. For every ele-

ment i of I, x(i) ∈ (SumBundle(F ))(i) by [7, (3)], [9, (74)], [12, (8)]. Set
S = SumBundle(F ). Reconsider W = the support of S as a many sorted
set indexed by I. For every object i such that i ∈ I holds x(i) ∈ W (i).
Reconsider s2 = s1� support(x,SumBundle(F )) as a non-empty, disjoint
valued many sorted set indexed by support(x,SumBundle(F )).

⋃
s2 is fi-

nite. dom s2 is finite. �

(31) Let us consider a non empty set I, a non-empty, disjoint valued many
sorted set J indexed by I, a J-indexed family of group families F , and func-
tions x, y. Suppose x, x ∈ d

∑
F . Then (dProd2Prod(F ))(x) ∈ sum

⋃
F .

Proof: Reconsider y = (dProd2Prod(F ))(x) as an element of
∏⋃

F . Set
s1 = rsupport(y, F ). Reconsider s2 = s1� support(x,SumBundle(F )) as
a non-empty, disjoint valued many sorted set indexed by
support(x,SumBundle(F )). For every object i such that i ∈ dom s2 holds
s2(i) is finite by [16, (40)], [7, (49)]. support(y,

⋃
F ) is finite. �

(32) Let us consider a non empty set I, a non-empty, disjoint valued many
sorted set J indexed by I, and a J-indexed family of group families F .
Then rng(dProd2Prod(F )� d

∑
F ) = Ωsum

⋃
F .

Proof: For every object y, y ∈ rng(dProd2Prod(F )�Ωd
∑
F ) iff y ∈

Ωsum
⋃
F by [18, (61)], (31), [7, (47)], (30). �

Let I be a non empty set, J be a non-empty, disjoint valued many sorted
set indexed by I, and F be a J-indexed family of group families. The functor
dSum2Sum(F ) yielding a homomorphism from d

∑
F to sum

⋃
F is defined by

the term

(Def. 13) dProd2Prod(F )� d
∑
F .

One can verify that dSum2Sum(F ) is bijective.
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The functor Sum2dSum(F ) yielding a homomorphism from sum
⋃
F to d

∑
F

is defined by the term

(Def. 14) (dSum2Sum(F ))−1.

Now we state the proposition:

(33) Let us consider a non empty set I, a non-empty, disjoint valued many
sorted set J indexed by I, and a J-indexed family of group families F .
Then Sum2dSum(F ) = Prod2dProd(F )� sum

⋃
F . The theorem is a con-

sequence of (2).

Let I be a non empty set, J be a non-empty, disjoint valued many sorted
set indexed by I, and F be a J-indexed family of group families. One can check
that Sum2dSum(F ) is bijective.

Now we state the proposition:

(34) Let us consider a non empty set I, a non-empty, disjoint valued many
sorted set J indexed by I, and a J-indexed family of group families F .
Then dSum2Sum(F ) = (Sum2dSum(F ))−1.

Let I be a non empty set, G be a group, and F be an internal direct sum
components of G and I. The functor InterHom(F ) yielding a homomorphism
from sumF to G is defined by

(Def. 15) it is bijective and for every finite-support function x from I into G such
that x ∈ sumF holds it(x) =

∏
x.

Let J be a non-empty, disjoint valued many sorted set indexed by I, M
be a direct sum components of G and I, N be a J-indexed family of group
families, and h be a many sorted set indexed by I. Assume for every element
i of I, there exists a homomorphism h0 from (SumBundle(N))(i) to M(i) such
that h0 = h(i) and h0 is bijective. The functor ProdHom(G,M,N, h) yielding
a homomorphism from d

∑
N to sumM is defined by

(Def. 16) it = SumMap(SumBundle(N),M, h) and it is bijective.

Now we state the propositions:

(35) Let us consider a non empty set I, a non-empty, disjoint valued many
sorted set J indexed by I, a group G, a direct sum components M of
G and I, and a J-indexed family of group families N . Suppose for every
element i of I, N(i) is a direct sum components of M(i) and J(i). Then⋃
N is a direct sum components of G and

⋃
J .

Proof: Consider f2 being a homomorphism from sumM to G such that f2
is bijective. Define P(object) = Ωsum(N($1(∈I))). Consider D2 being a func-
tion such that domD2 = I and for every object i such that i ∈ I holds
D2(i) = P(i) from [7, Sch. 3]. Define Q(object) = ΩM($1(∈I)). Consider
R1 being a function such that domR1 = I and for every object i such
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that i ∈ I holds R1(i) = Q(i) from [7, Sch. 3]. Define R[object, object] ≡
there exists a homomorphism f3 from sum(N($1(∈ I))) to M($1(∈ I))
such that f3 = $2 and f3 is bijective. For every element i of I, there exi-
sts an element y of

⋃
D2→̇

⋃
R1 such that R[i, y] by [7, (3)], [9, (74)].

Consider f1 being a function from I into
⋃
D2→̇

⋃
R1 such that for every

element i of I, R[i, f1(i)] from [8, Sch. 3]. For every element i of I, there
exists a homomorphism h0 from (SumBundle(N))(i) to M(i) such that
h0 = f1(i) and h0 is bijective. �

(36) Let us consider a non empty set I, a non-empty, disjoint valued many
sorted set J indexed by I, a group G, an internal direct sum components
M of G and I, and a J-indexed family of group families N . Suppose for
every element i of I, N(i) is an internal direct sum components of M(i)
and J(i). Then

⋃
N is an internal direct sum components of G and

⋃
J .

Proof: Consider f3 being a homomorphism from sumM to G such that f3
is bijective and for every finite-support function x from I into G such that
x ∈ sumM holds f3(x) =

∏
x. Define Q[object, object] ≡ there exists

an internal direct sum components N1 of M($1(∈ I)) and J($1(∈ I))
such that N1 = N($1) and $2 = InterHom(N1). For every object x such
that x ∈ I there exists an object y such that Q[x, y]. Consider f1 being
a function such that dom f1 = I and for every object i such that i ∈ I holds
Q[i, f1(i)] from [7, Sch. 2]. Set f2 = ProdHom(G,M,N, f1). For every
element i of I, there exists a homomorphism h0 from (SumBundle(N))(i)
to M(i) such that h0 = f1(i) and h0 is bijective and for every finite-support
function x from J(i) into M(i) such that x ∈ (SumBundle(N))(i) holds
h0(x) =

∏
x. For every element i of I, there exists a homomorphism h0

from (SumBundle(N))(i) to M(i) such that h0 = f1(i) and h0 is bijective.
Reconsider h = f3 · f2 ·Sum2dSum(N) as a homomorphism from sum

⋃
N

to G. Reconsider U2 =
⋃
J as a non empty set. Reconsider U3 =

⋃
N as

a direct sum components of G and U2. For every object j such that j ∈ U2
holds U3(j) is a subgroup of G by (21), [16, (56)]. For every finite-support
function x from U2 into G such that x ∈ sumU3 holds h(x) =

∏
x by [16,

(42), (40)], [7, (13)], [8, (5), (15)]. �

4. Conservation Rule of Direct Sum Decomposition for Layering

Now we state the propositions:

(37) Let us consider a non empty set I, a non-empty, disjoint valued ma-
ny sorted set J indexed by I, a group G, a group family M of I, and
a J-indexed family of group families N . Suppose

⋃
N is a direct sum com-

ponents of G and
⋃
J and for every element i of I, N(i) is a direct sum
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components of M(i) and J(i). Then M is a direct sum components of G
and I.
Proof: Set U3 =

⋃
N . Consider f4 being a homomorphism from sumU3 to

G such that f4 is bijective. Define P(object) = the carrier of sum(N($1(∈
I))). Consider D2 being a function such that domD2 = I and for eve-
ry object i such that i ∈ I holds D2(i) = P(i) from [7, Sch. 3]. Define
Q(object) = the carrier of M($1(∈ I)). Consider R1 being a function such
that domR1 = I and for every object i such that i ∈ I holds R1(i) = Q(i)
from [7, Sch. 3]. Define R[object, object] ≡ there exists a homomorphism
f3 from M($1(∈ I)) to sum(N($1(∈ I))) such that f3 = $2 and f3 is bi-
jective. For every element i of I, there exists an element y of

⋃
R1→̇

⋃
D2

such that R[i, y] by [17, (62), (63)], [7, (3)], [9, (74)]. Consider f1 being
a function from I into

⋃
R1→̇

⋃
D2 such that for every element i of I,

R[i, f1(i)] from [8, Sch. 3]. For every element i of I, there exists a homo-
morphism h0 from M(i) to (SumBundle(N))(i) such that h0 = f1(i) and
h0 is bijective. �

(38) Let us consider a non empty set I, a non-empty, disjoint valued many
sorted set J indexed by I, a group G, a subgroup family M of I and G,
and a J-indexed family of group families N . Suppose

⋃
N is an internal

direct sum components of G and
⋃
J and for every element i of I, N(i) is

an internal direct sum components of M(i) and J(i). Then M is an internal
direct sum components of G and I.
Proof: Reconsider U2 =

⋃
J as a non empty set. Consider f4 being

a homomorphism from sum
⋃
N to G such that f4 is bijective and for every

finite-support function x from U2 into G such that x ∈ sum
⋃
N holds

f4(x) =
∏
x. Define Q[object, object] ≡ there exists an internal direct

sum components N1 of M($1(∈ I)) and J($1(∈ I)) such that N1 = N($1)
and $2 = (InterHom(N1))−1. For every object x such that x ∈ I there
exists an object y such that Q[x, y].

Consider f1 being a function such that dom f1 = I and for every
object i such that i ∈ I holds Q[i, f1(i)] from [7, Sch. 2]. Reconsider
f3 = SumMap(M, (SumBundle(N)), f1) as a homomorphism from sumM

to d
∑
N . For every element i of I, there exists a homomorphism h0 from

M(i) to (SumBundle(N))(i) such that h0 = f1(i) and h0 is bijective by
[17, (62), (63)]. Reconsider h = f4 ·dSum2Sum(N) ·f3 as a homomorphism
from sumM to G. For every element i of I, there exists a homomorphism
h0 from (SumBundle(N))(i) to M(i) such that h0−1 = f1(i) and h0 is
bijective and for every finite-support function x from J(i) into M(i) such
that x ∈ (SumBundle(N))(i) holds h0(x) =

∏
x. For every element i of I,

there exists a homomorphism h0 from (SumBundle(N))(i) to M(i) such
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that h0−1 = f1(i) and h0 is bijective. For every finite-support function x

from I into G such that x ∈ sumM holds h(x) =
∏
x by [16, (40)], [7,

(13)], [8, (5), (15)]. �

(39) Let us consider a non empty set I2, and a group family F2 of I2. Suppose

for every element i of I2, F2(i) = 1. Then α = 1, where α is the carrier
of sumF2.
Proof: For every object x such that x ∈ ΩsumF2 holds x = 1sumF2 by
[16, (42)], [1, (30)], [2, (102)], [10, (5)]. �

(40) Let us consider a non empty set I, a group G, and a finite-support
function x from I into G. Suppose for every object i such that i ∈ I holds
x(i) = 1G. Then

∏
x = 1G.

(41) Let us consider a non empty set I, a group G, a finite-support function
x from I into G, and an element a of G. If I = {1, 2} and x = 〈a,1G〉,
then

∏
x = a.

Proof: Reconsider i1 = 1 as an element of I. Set y = (I 7−→ 1G)+·(i1, a).
For every object i such that i ∈ domx holds x(i) = y(i) by [3, (44)], [4,
(31), (32)], [15, (7)]. �

(42) Let us consider a group G, non empty sets I1, I2, a direct sum compo-
nents F1 of G and I1, and a group family F2 of I2. Suppose I1 misses I2
and for every element i of I2, F2(i) = 1. Then F1+·F2 is a direct sum
components of G and I1 ∪ I2.
Proof: Reconsider I = {1, 2} as a non empty set. Set J = {〈〈1, I1〉〉, 〈〈2,
I2〉〉}. For every objects x, y1, y2 such that 〈〈x, y1〉〉, 〈〈x, y2〉〉 ∈ J holds
y1 = y2. ∅ /∈ rng J . For every objects i, j such that i 6= j holds J(i)
misses J(j). Reconsider M = 〈sumF1, sumF2〉 as a group family of I.
ΩsumF2 = 1. Consider w being an object such that {w} = ΩsumF2 . For
every functions x, y such that x, y ∈ Ω∏M and x(1) = y(1) holds x = y

by [12, (5)], [3, (44)].
Consider h1 being a homomorphism from sumF1 to G such that

h1 is bijective. Set C1 = the carrier of
∏
M . Set C2 = the carrier of

G. Define P[element of C1, element of C2] ≡ $2 = h1($1(1)). For every
element x of C1, there exists an element y of C2 such that P[x, y] by
[12, (5)], [3, (44)], [8, (5)]. Consider h being a function from C1 into C2
such that for every element x of C1, P[x, h(x)] from [8, Sch. 3]. For every
objects x1, x2 such that x1, x2 ∈ C1 and h(x1) = h(x2) holds x1 = x2
by [12, (5)], [3, (44)], [8, (19)]. For every object y such that y ∈ C2 there
exists an object x such that x ∈ C1 and y = h(x) by [8, (11)], [3, (44)].
For every elements a, b of C1, h(a · b) = h(a) · h(b) by [3, (44)], [12, (5)],
[10, (1)]. Reconsider M = 〈sumF1, sumF2〉 as a direct sum components
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of G and I. Set N = 〈F1, F2〉. For every element i of I, N(i) is a group
family of J(i) by [3, (44)]. For every element i of I, N(i) is a direct sum
components of M(i) and J(i) by [3, (44)]. For every object x such that
x ∈ domF1 ∪ domF2 holds if x ∈ domF2, then (

⋃
N)(x) = F2(x) and if

x /∈ domF2, then (
⋃
N)(x) = F1(x) by (21), [3, (44)]. �

(43) Let us consider a group G, non empty sets I1, I2, an internal direct
sum components F1 of G and I1, and a subgroup family F2 of I2 and G.
Suppose I1 misses I2 and F2 = I2 7−→ {1}G. Then F1+·F2 is an internal
direct sum components of G and I1 ∪ I2.
Proof: Reconsider I = {1, 2} as a non empty set. Set J = {〈〈1, I1〉〉, 〈〈2,
I2〉〉}. For every objects x, y1, y2 such that 〈〈x, y1〉〉, 〈〈x, y2〉〉 ∈ J holds
y1 = y2. ∅ /∈ rng J . For every objects i, j such that i 6= j holds J(i)
misses J(j). Reconsider M = 〈G, {1}G〉 as a group family of I. For every
functions x, y such that x, y ∈ Ω∏M and x(1) = y(1) holds x = y by
[12, (5)], [3, (44)]. Set h1 = id(the carrier of G). Set C1 = the carrier of∏
M . Set C2 = the carrier of G. Define P[element of C1, element of C2] ≡

$2 = h1($1(1)). For every element x of C1, there exists an element y of C2
such that P[x, y] by [12, (5)], [3, (44)], [8, (5)]. Consider h being a function
from C1 into C2 such that for every element x of C1, P[x, h(x)] from [8,
Sch. 3]. For every objects x1, x2 such that x1, x2 ∈ C1 and h(x1) = h(x2)
holds x1 = x2 by [12, (5)], [3, (44)], [8, (19)]. For every object y such that
y ∈ C2 there exists an object x such that x ∈ C1 and y = h(x) by [8, (11)],
[3, (44)]. For every elements a, b of C1, h(a · b) = h(a) · h(b) by [3, (44)],
[12, (5)], [10, (1)].

Reconsider M = 〈G, {1}G〉 as a direct sum components of G and I.
For every element i of I, M(i) is a subgroup of G by [3, (44)], [16, (54)]. For
every finite-support function x from I into G such that x ∈ sumM holds
h(x) =

∏
x by [10, (9)], [3, (44)], (41). Set N = 〈F1, F2〉. For every element

i of I, N(i) is a group family of J(i) by [3, (44)]. For every element i of I,
N(i) is an internal direct sum components of M(i) and J(i) by [3, (44)],
[15, (7)], [1, (30)], (39). For every object x such that x ∈ domF1 ∪domF2
holds if x ∈ domF2, then (

⋃
N)(x) = F2(x) and if x /∈ domF2, then

(
⋃
N)(x) = F1(x) by (21), [3, (44)]. �
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