The C^k Space1

Katuhiko Kanazashi
Shizuoka City, Japan

Hiroyuki Okazaki
Shinshu University
Nagano, Japan

Yasunari Shidama
Shinshu University
Nagano, Japan

Summary. In this article, we formalize continuous differentiability of real-valued functions on n-dimensional real normed linear spaces. Next, we give a definition of the C^k space according to [23].

MML identifier: CKSPACE1, version: 8.0.01 5.5.1167

The notation and terminology used in this paper have been introduced in the following articles: [1], [4], [10], [3], [5], [11], [17], [6], [7], [19], [18], [2], [8], [14], [12], [15], [13], [21], [22], [16], [20], and [9].

1. Definition of Continuously Differentiable Functions and Some Properties

Let m be a non zero element of \mathbb{N}, f be a partial function from \mathbb{R}^m to \mathbb{R}, k be an element of \mathbb{N}, and Z be a set. We say that f is continuously differentiable up to order of k and Z if and only if

(Def. 1) (i) $Z \subseteq \text{dom } f$, and
(ii) f is partial differentiable up to order k and Z, and
(iii) for every non empty finite sequence I of elements of \mathbb{N} such that $\text{len } I \leq k$ and $\text{rng } I \subseteq \text{Seg } m$ holds $f[I]Z$ is continuous on Z.

Now we state the propositions:

(1) Let us consider a non zero element m of \mathbb{N}, a set Z, a non empty finite sequence I of elements of \mathbb{N}, and a partial function f from \mathbb{R}^m to \mathbb{R}. Suppose f is partially differentiable on Z w.r.t. I. Then $\text{dom}(f[I]Z) = Z$.

1This work was supported by JSPS KAKENHI 22300285.
(2) Let us consider a non zero element \(m \) of \(\mathbb{N} \), an element \(k \) of \(\mathbb{N} \), a non empty subset \(X \) of \(\mathbb{R}^m \), and a partial function \(f \) from \(\mathbb{R}^m \) to \(\mathbb{R} \). Suppose
\[(i) \ X \text{ is open, and}
(ii) \ X \subseteq \text{dom } f.\]
Then \(f \) is continuously differentiable up to order of 1 and \(X \) if and only if \(f \) is differentiable on \(X \) and for every element \(x_0 \) of \(\mathbb{R}^m \) and for every real number \(r \) such that \(x_0 \in X \) and \(0 < r \) there exists a real number \(s \) such that \(0 < s \) and for every element \(x_1 \) of \(\mathbb{R}^m \) such that \(x_1 \in X \) and \(|x_1 - x_0| < s \) for every element \(v \) of \(\mathbb{R}^m \), \(|f'(x_1)(v) - f'(x_0)(v)| \leq r \cdot |v| \).

(3) Let us consider a non zero element \(m \) of \(\mathbb{N} \), a non empty subset \(X \) of \(\mathbb{R}^m \), and a partial function \(f \) from \(\mathbb{R}^m \) to \(\mathbb{R} \). Suppose
\[(i) \ X \text{ is open, and}
(ii) \ X \subseteq \text{dom } f, \text{ and}
(iii) \ f \text{ is continuously differentiable up to order of } 1 \text{ and } X.\]
Then \(f \) is continuous on \(X \). The theorem is a consequence of (2).

(4) Let us consider a non zero element \(m \) of \(\mathbb{N} \), an element \(k \) of \(\mathbb{N} \), a non empty subset \(X \) of \(\mathbb{R}^m \), and partial functions \(f, g \) from \(\mathbb{R}^m \) to \(\mathbb{R} \). Suppose
\[(i) \ f \text{ is continuously differentiable up to order of } k \text{ and } X, \text{ and}
(ii) \ g \text{ is continuously differentiable up to order of } k \text{ and } X, \text{ and}
(iii) \ X \text{ is open.}\]
Then \(f + g \) is continuously differentiable up to order of \(k \) and \(X \). The theorem is a consequence of (1). PROOF: For every non empty finite sequence \(I \) of elements of \(\mathbb{N} \) such that \(\text{len } I \leq k \) and \(\text{rng } I \subseteq \text{Seg } m \) holds \((f + g)|_I^X \) is continuous on \(X \). □

(5) Let us consider a non zero element \(m \) of \(\mathbb{N} \), an element \(k \) of \(\mathbb{N} \), a non empty subset \(X \) of \(\mathbb{R}^m \), a real number \(r \), and a partial function \(f \) from \(\mathbb{R}^m \) to \(\mathbb{R} \). Suppose
\[(i) \ f \text{ is continuously differentiable up to order of } k \text{ and } X, \text{ and}
(ii) \ X \text{ is open.}\]
Then \(r \cdot f \) is continuously differentiable up to order of \(k \) and \(X \). The theorem is a consequence of (1). PROOF: For every non empty finite sequence \(I \) of elements of \(\mathbb{N} \) such that \(\text{len } I \leq k \) and \(\text{rng } I \subseteq \text{Seg } m \) holds \(r \cdot f|_I^X \) is continuous on \(X \). □

(6) Let us consider a non zero element \(m \) of \(\mathbb{N} \), an element \(k \) of \(\mathbb{N} \), a non empty subset \(X \) of \(\mathbb{R}^m \), and partial functions \(f, g \) from \(\mathbb{R}^m \) to \(\mathbb{R} \). Suppose
\[(i) \ f \text{ is continuously differentiable up to order of } k \text{ and } X, \text{ and}
(ii) \ g \text{ is continuously differentiable up to order of } k \text{ and } X, \text{ and}
(iii) X is open.

Then $f - g$ is continuously differentiable up to order of k and X. The theorem is a consequence of (1). Proof: For every non empty finite sequence I of elements of \mathbb{N} such that $\text{len} \ I \leq k$ and $\text{rng} \ I \subseteq \text{Seg} \ m$ holds $(f - g)^{|I}X$ is continuous on X. □

Let us consider a non zero element m of \mathbb{N}, a non empty subset Z of \mathbb{R}^m, a partial function f from \mathbb{R}^m to \mathbb{R}, and non empty finite sequences I, G of elements of \mathbb{N}. Now we state the propositions:

(7) $f^{|G - I}Z = (f^{|G}Z)^{|I}Z$.

(8) $f^{|G - I}Z$ is continuous on Z if and only if $(f^{|G}Z)^{|I}Z$ is continuous on Z.

Now we state the propositions:

(9) Let us consider a non zero element m of \mathbb{N}, a non empty subset Z of \mathbb{R}^m, a partial function f from \mathbb{R}^m to \mathbb{R}, elements i, j of \mathbb{N}, and a non empty finite sequence I of elements of \mathbb{N}. Suppose

(i) f is continuously differentiable up to order of $i + j$ and Z, and
(ii) $\text{rng} \ I \subseteq \text{Seg} \ m$, and
(iii) $\text{len} \ I = j$.

Then $f^{|I}Z$ is continuously differentiable up to order of i and Z. The theorem is a consequence of (1) and (7).

(10) Let us consider a non zero element m of \mathbb{N}, a non empty subset Z of \mathbb{R}^m, a partial function f from \mathbb{R}^m to \mathbb{R}, and elements i, j of \mathbb{N}. Suppose

(i) f is continuously differentiable up to order of i and Z, and
(ii) $j \leq i$.

Then f is continuously differentiable up to order of j and Z.

(11) Let us consider a non zero element m of \mathbb{N} and a non empty subset Z of \mathbb{R}^m. Suppose Z is open. Let us consider an element k of \mathbb{N} and partial functions f, g from \mathbb{R}^m to \mathbb{R}. Suppose

(i) f is continuously differentiable up to order of k and Z, and
(ii) g is continuously differentiable up to order of k and Z.

Then $f \cdot g$ is continuously differentiable up to order of k and Z. The theorem is a consequence of (10), (1), (3), (9), and (7). Proof: Define $\mathcal{P}[\text{element of} \ \mathbb{N}] :=$ for every partial functions f, g from \mathbb{R}^m to \mathbb{R} such that f is continuously differentiable up to order of k and Z and g is continuously differentiable up to order of k and Z holds $f \cdot g$ is continuously differentiable up to order of k and Z. Set $Z0 = (0 \ \text{qua} \ \text{natural number})$. $\mathcal{P}[0]$. For every element k of \mathbb{N} such that $\mathcal{P}[k]$ holds $\mathcal{P}[k + 1]$. □

(12) Let us consider a non zero element m of \mathbb{N}, a partial function f from \mathbb{R}^m to \mathbb{R}, a non empty subset X of \mathbb{R}^m, and a real number d. Suppose
Let us consider an element x of \mathcal{R}. If $x \in X$, then f is differentiable in x and $f'(x) = \mathcal{R} \mapsto 0$.

Theorem 13 Let us consider a non zero element m of \mathbb{N}, a partial function f from \mathcal{R}^m to \mathbb{R}, a non empty subset X of \mathcal{R}^m, and a real number d. Suppose

(i) X is open, and
(ii) $f = X \mapsto d$.

Let us consider an element x_0 of \mathcal{R}^m and a real number r. Suppose

(iii) $x_0 \in X$, and
(iv) $0 < r$.

Then there exists a real number s such that

(v) $0 < s$, and
(vi) for every element x_1 of \mathcal{R}^m such that $x_1 \in X$ and $|x_1 - x_0| < s$ for every element v of \mathcal{R}^m, $|f'(x_1)(v) - f'(x_0)(v)| \leq r \cdot |v|$.

The theorem is a consequence of (12).

Theorem 14 Let us consider a non zero element m of \mathbb{N}, a partial function f from \mathcal{R}^m to \mathbb{R}, a non empty subset X of \mathcal{R}^m, and a real number d. Suppose

(i) X is open, and
(ii) $f = X \mapsto d$.

Then

(iii) f is differentiable on X, and
(iv) $\text{dom} f'\big|_X = X$, and
(v) for every element x of \mathcal{R}^m such that $x \in X$ holds $(f'\big|_X)_x = \mathcal{R} \mapsto 0$.

The theorem is a consequence of (12).

Theorem 15 Let us consider a non zero element m of \mathbb{N}, a partial function f from \mathcal{R}^m to \mathbb{R}, a non empty subset X of \mathcal{R}^m, a real number d, and an element i of \mathbb{N}. Suppose

(i) X is open, and
(ii) $f = X \mapsto d$, and
(iii) $1 \leq i \leq m$.

Then

(iv) f is partially differentiable on X w.r.t. i, and
(v) $f'\big|_X$ is continuous on X.

The theorem is a consequence of (14) and (13).
(16) Let us consider a non zero element \(m \) of \(\mathbb{N} \), an element \(i \) of \(\mathbb{N} \), a partial function \(f \) from \(\mathbb{R}^m \) to \(\mathbb{R} \), a non empty subset \(X \) of \(\mathbb{R}^m \), and a real number \(d \). Suppose

(i) \(X \) is open, and

(ii) \(f = X \mapsto d \), and

(iii) \(1 \leq i \leq m \).

Then \(f|_X^i = X \mapsto 0 \). The theorem is a consequence of (15) and (12).

Let us consider a non zero element \(m \) of \(\mathbb{N} \), a non empty finite sequence \(I \) of elements of \(\mathbb{N} \), a non empty subset \(X \) of \(\mathbb{R}^m \), a partial function \(f \) from \(\mathbb{R}^m \) to \(\mathbb{R} \), and a real number \(d \). Now we state the propositions:

(17) Suppose \(X \) is open and \(f = X \mapsto d \) and \(\text{rng} \, I \subseteq \text{Seg} \, m \). Then

(i) \(\text{PartDiffSeq}(f, X, I)(0) = X \mapsto d \), and

(ii) for every element \(i \) of \(\mathbb{N} \) such that \(1 \leq i \leq \text{len} \, I \) holds

\(\text{PartDiffSeq}(f, X, I)(i) = X \mapsto 0 \).

(18) Suppose \(X \) is open and \(f = X \mapsto d \) and \(\text{rng} \, I \subseteq \text{Seg} \, m \). Then

(i) \(f \) is partially differentiable on \(X \) w.r.t. \(I \), and

(ii) \(f|_X^I \) is continuous on \(X \).

Now we state the proposition:

(19) Let us consider a non zero element \(m \) of \(\mathbb{N} \), an element \(k \) of \(\mathbb{N} \), a non empty subset \(X \) of \(\mathbb{R}^m \), a partial function \(f \) from \(\mathbb{R}^m \) to \(\mathbb{R} \), and a real number \(d \). Suppose

(i) \(X \) is open, and

(ii) \(f = X \mapsto d \).

Then \(f \) is continuously differentiable up to order of \(k \) and \(X \). The theorem is a consequence of (18).

Let \(m \) be a non zero element of \(\mathbb{N} \). Observe that there exists a non empty subset of \(\mathbb{R}^m \) which is open.

2. Definition of the \(\mathbb{C}^k \) Space

Let \(m \) be a non zero element of \(\mathbb{N} \), \(k \) be an element of \(\mathbb{N} \), and \(X \) be a non empty open subset of \(\mathbb{R}^m \). The functor the \(\mathbb{C}^k \) functions of \(k \) and \(X \) yielding a non empty subset of \(\mathbb{R} \text{Algebra} \) \(X \) is defined by the term

\[\{ f \text{ where } f \text{ is a partial function from } \mathbb{R}^m \text{ to } \mathbb{R} : f \text{ is continuously differentiable up to order of } k \text{ and } X \text{ and } \text{dom } f = X \}. \]
Let us note that the C^k functions of k and X is additively linearly closed and multiplicatively closed.

The functor the \mathbb{R} algebra of C^k functions of k and X yielding a subalgebra of $\text{RAlgebra } X$ is defined by the term

$$\langle \text{the } C^k \text{ functions of } k \text{ and } X, \text{ mult(} \text{the } C^k \text{ functions of } k \text{ and } X, \text{ RAlgebra } X), \text{ Add(} \text{the } C^k \text{ functions of } k \text{ and } X, \text{ RAlgebra } X), \text{ One(} \text{the } C^k \text{ functions of } k \text{ and } X, \text{ RAlgebra } X), \text{ Zero(} \text{the } C^k \text{ functions of } k \text{ and } X, \text{ RAlgebra } X) \rangle.$$

Let us note that the \mathbb{R} algebra of C^k functions of k and X is Abelian additive associative right zeroed right complementable vector distributive scalar distributive scalar associative scalar unital commutative associative right unital right distributive and vector associative.

Now we state the propositions:

(20) Let us consider a non zero element m of \mathbb{N}, an element k of \mathbb{N}, a non empty open subset X of \mathbb{R}^m, vectors F, G, H of the \mathbb{R} algebra of C^k functions of k and X, and partial functions f, g, h from \mathbb{R}^m to \mathbb{R}. Suppose

(i) $f = F$, and
(ii) $g = G$, and
(iii) $h = H$.

Then $H = F + G$ if and only if for every element x of X, $h(x) = f(x) + g(x)$.

(21) Let us consider a non zero element m of \mathbb{N}, an element k of \mathbb{N}, a non empty open subset X of \mathbb{R}^m, vectors F, G, H of the \mathbb{R} algebra of C^k functions of k and X, partial functions f, g, h from \mathbb{R}^m to \mathbb{R}, and a real number a. Suppose

(i) $f = F$, and
(ii) $g = G$.

Then $G = a \cdot F$ if and only if for every element x of X, $g(x) = a \cdot f(x)$.

(22) Let us consider a non zero element m of \mathbb{N}, an element k of \mathbb{N}, a non empty open subset X of \mathbb{R}^m, vectors F, G, H of the \mathbb{R} algebra of C^k functions of k and X, and partial functions f, g, h from \mathbb{R}^m to \mathbb{R}. Suppose

(i) $f = F$, and
(ii) $g = G$, and
(iii) $h = H$.

Then $H = F \cdot G$ if and only if for every element x of X, $h(x) = f(x) \cdot g(x)$.

Let us consider a non zero element m of \mathbb{N}, an element k of \mathbb{N}, and a non empty open subset X of \mathbb{R}^m. Now we state the propositions:

(23) $0_\alpha = X \mapsto 0$, where α is the \mathbb{R} algebra of C^k functions of k and X.
(24) $1_\alpha = X \mapsto 1$, where α is the \mathbb{R} algebra of C^k functions of k and X.
The C^k space

References

Received November 9, 2012