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Summary. This article introduced some important inequalities on partial
sum and partial product, as well as some basic inequalities.
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The notation and terminology used in this paper are introduced in the following

papers: [2]> [1]7 [9]’ [6]7 [3]v [5]> [7]7 [8]7 and [4]

For simplicity, we adopt the following rules: a, b, ¢, d are positive real

numbers, m, u, w, x, y, z are real numbers, n, k are natural numbers, and s, s;
are sequences of real numbers.

Next we state a number of propositions:

(a+b) - (2+1) >4
a*+vt>a b+a- b

b+
Ifa<b,then1<a—+z.
Ifa<b,then%<\/%.

4 a24b2

Ifa<b,then\/%<b7.

If a < b, then 7 <

525

(© 2005 University of Bialystok
ISSN 1426-2630



N NN N NN NN~ =
0 N O O = W N O O

w W W
N = O

w
w

A~ N N~~~/ —~ A~ o~ o~ o~ o~~~ o~~~ o~~~ —~
=W W W W W Ww [N}
S © 00 g O Ot = Nej

N N D N N ~ _ D D e DD DO

N
=

FUGUO GE AND XIQUAN LIANG

If |z| <1 and |y| < 1, then |1ﬁ_—;yy| <1

lzty| x| ||
Tty = T+ja] T T+

5> 1.

b d
a+(l§+d + a+b+-c + b-‘rg-i-d + a+c+d <2
Ifa+b > cand b+c > a and a+c > b, then (a+}))_c+ (b+i)—a+ (c+¢11)—b >

9
a+b+c’

V0a+b)-(c+d)>a-c+Vb-d
(a-b+c-d)-(a-c+b-d)>4-a-b-c-d.

44byce>3

Ifa-b+b-c+c-a=1, then a + b+ ¢ > /3.

(b+2)fa + (c+cbt)fb + (a+g)fc >3

(a—l—é)-(b—l—%)Z(m—{—\/%)?

be paeyabs>gybte

Ifz>yandy >z thenaz? - y+9y?-24+22-2>2-y>+y- 22+ 222
Ifa>bandb>c,thenﬁ>i.

a—c
d
It b>a and ¢ > d, then = > 7%.

m-x+z-y<vVm24 22\ 22 42
(m-z4+u-y+w-2)2 < (m?+u2+w?) - (22 + 9% + 22).
%Sa—i—b—i—c.

a2+a-b+b2 b2+b-c+c2? c2+ca+a?
atbte< /ety [Rabere | ata?

a?+a-b+b2 b2+b-c+c? c2+cata? a?+b2 b2+c2 c2+a?
\/ 3 ""\/ 3+ 3 = 7 T 7 T 2 -

\/az_gbz_i_\/bz;c'z_'_\/cz.gaz <3 (a®+12+c2).

a b c d
a+b+d + a+b+c + b+c+d + a+c+

V3 (a2 + b2+ c2) < beqoca g oab
Ifa+b=1,then (5 —1) (55 —1)>9
Ifaer:l,thena-bJrﬁZ%.
Ifa—i—b—i—c:l,then%—i—%—i-%zQ.
Ifa+b+c=1,then (1 -1)- (3 -1)-(2-1)>38
Ifa+b+c=1then (1+1).-(14+3)-1+1)>64

Ifx—l—y—f—z:Lthenx'y—i—y-z—l—z'xg%.
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_ 1,1 ,1
Ifa-b-c=1,then Va+vb+e<l4l41
If a > band b > ¢, then a®% - b>0 . ¢ > gbte. pate. cotd,
If n > 1, then ¢ + 0"t >a™ - b+a-b".
If a®2 + b2 = ¢ and n > 3, then a2 4+ b2 < 12

A/—\/—\A/—\A/—\
IS
U~ W

S N N N N N N

46) Ifn > 1, then (1+ =5)" < (1+ £)"

47) If n>1and k > 1, then (a¥ 4 b%) - (a™ + ") < 2- (aFt7 4 bFH7).

48) If for every n holds s(n) = \/%, then for every n holds
(a0 s(@))ren(n) <2-vn+ 1.

(49) If for every m holds s(n) = (n+1)2’ then for every n holds

(Yo s(@)ren(n) <2 — .

(50) If for every n holds s(n) = @ +1)2, then (30, s(@))ken(n) < 2.

(51) 1If for every n holds s(n) < 1, then for every n holds (3 5 _ s(a))xen(n) <
n+ 1.

(52) If for every n holds s(n) > 0 and s(n) < 1, then for every n holds (the
partial product of s)(n) > (3> n_; s(@))ken(n) — n.

(53) If for every n holds s(n) > 0 and s;(n) =
(Xa=o(s1)(@))ren(n) > 0.

(54) If for every n holds s(n) > 0 and s;(n) =
(Xa=o s(@))ren(n) - (a=o(51)(@))sen(n) > (n + 1)

(55) If for every n such that n > 1 holds s(n) = v/n and s(0) = 0, then for
every n such that n > 1 holds (35_( s(@))xen(n) < 3 - (4-n+3)-/n.

(56) If for every n such that n > 1 holds s(n) = /n and s(0) = 0, then for
every n such that n > 1 holds (35 s(@))sen(n) > 2 -n- /n.

(57) Suppose that for every n such that n > 1 holds s(n) = 1+ 2% i
(0) = 1. Let given n. If n > 1, then (the partial product of s)(n) >

“V2-n+3.
(58) If for every n such that n > 1 holds s(n) = y/n-(n+1) and s(0) = 0,
then for every n such that n > 1 holds (3.5 _, s(@))ken(n) > %

s%l), then for every n holds

—~

and
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