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Summary. In this article, the basic properties of the series on Banach
algebra are described. The Neumann series is introduced in the last section.
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The notation and terminology used in this paper are introduced in the following

articles: [19], [21], [22], [4], [5], [3], [2], [18], [6], [1], [20], [10], [11], [12], [17], [9],

[7], [8], [14], [13], [15], and [16].

1. Basic Properties of Sequences of Norm Space

Let X be a non empty normed structure and let s1 be a sequence of X. The

functor (
∑

κ

α=0(s1)(α))κ∈N yielding a sequence of X is defined as follows:

(Def. 1) (
∑

κ

α=0(s1)(α))κ∈N(0) = s1(0) and for every natural number n holds

(
∑

κ

α=0(s1)(α))κ∈N(n + 1) = (
∑

κ

α=0(s1)(α))κ∈N(n) + s1(n + 1).

One can prove the following proposition

(1) Let X be an add-associative right zeroed right complementable non

empty normed structure and s1 be a sequence of X. Suppose that for

every natural number n holds s1(n) = 0X . Let m be a natural number.

Then (
∑

κ

α=0(s1)(α))κ∈N(m) = 0X .

Let X be a real normed space and let s1 be a sequence of X. We say that

s1 is summable if and only if:

(Def. 2) (
∑

κ

α=0(s1)(α))κ∈N is convergent.

Let X be a real normed space. One can verify that there exists a sequence

of X which is summable.

Let X be a real normed space and let s1 be a sequence of X. The functor
∑

s1 yields an element of X and is defined by:
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(Def. 3)
∑

s1 = lim((
∑

κ

α=0(s1)(α))κ∈N).

Let X be a real normed space and let s1 be a sequence of X. We say that

s1 is norm-summable if and only if:

(Def. 4) ‖s1‖ is summable.

Next we state several propositions:

(2) For every real normed space X and for every sequence s1 of X and for

every natural number m holds 0 ¬ ‖s1‖(m).

(3) For every real normed space X and for all elements x, y, z of X holds

‖x− y‖ = ‖(x− z) + (z − y)‖.

(4) Let X be a real normed space and s1 be a sequence of X. Suppose s1 is

convergent. Let s be a real number. Suppose 0 < s. Then there exists a

natural number n such that for every natural number m if n ¬ m, then

‖s1(m)− s1(n)‖ < s.

(5) Let X be a real normed space and s1 be a sequence of X. Then s1 is

Cauchy sequence by norm if and only if for every real number p such that

p > 0 there exists a natural number n such that for every natural number

m such that n ¬ m holds ‖s1(m)− s1(n)‖ < p.

(6) Let X be a real normed space and s1 be a sequence of X. Suppose that

for every natural number n holds s1(n) = 0X . Let m be a natural number.

Then (
∑

κ

α=0‖s1‖(α))κ∈N(m) = 0.

Let X be a real normed space and let s1 be a sequence of X. Let us observe

that s1 is constant if and only if:

(Def. 5) There exists an element r of X such that for every natural number n

holds s1(n) = r.

Let X be a real normed space, let s1 be a sequence of X, and let k be a

natural number. The functor s1↑k yielding a sequence of X is defined as follows:

(Def. 6) For every natural number n holds (s1 ↑ k)(n) = s1(n + k).

Let X be a non empty 1-sorted structure, let N1 be an increasing sequence

of naturals, and let s1 be a sequence of X. Then s1 · N1 is a function from N

into the carrier of X.

Let X be a non empty 1-sorted structure, let N1 be an increasing sequence

of naturals, and let s1 be a sequence of X. Then s1 ·N1 is a sequence of X.

Let X be a real normed space and let s1, s2 be sequences of X. We say that

s1 is a subsequence of s2 if and only if:

(Def. 7) There exists an increasing sequence N1 of naturals such that s1 = s2 ·N1.

Next we state a number of propositions:

(7) Let X be a non empty 1-sorted structure, s1 be a sequence of X, N1

be an increasing sequence of naturals, and n be a natural number. Then

(s1 ·N1)(n) = s1(N1(n)).
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(8) For every real normed space X and for every sequence s1 of X holds

s1 ↑ 0 = s1.

(9) For every real normed space X and for every sequence s1 of X and for

all natural numbers k, m holds s1 ↑ k ↑m = s1 ↑m ↑ k.

(10) For every real normed space X and for every sequence s1 of X and for

all natural numbers k, m holds s1 ↑ k ↑m = s1 ↑ (k + m).

(11) Let X be a real normed space and s1, s2 be sequences of X. If s2 is a

subsequence of s1 and s1 is convergent, then s2 is convergent.

(12) Let X be a real normed space and s1, s2 be sequences of X. If s2 is a

subsequence of s1 and s1 is convergent, then lim s2 = lim s1.

(13) Let X be a real normed space, s1 be a sequence of X, and k be a natural

number. Then s1 ↑ k is a subsequence of s1.

(14) Let X be a real normed space, s1, s2 be sequences of X, and k be a

natural number. If s1 is convergent, then s1 ↑ k is convergent and lim(s1 ↑

k) = lim s1.

(15) Let X be a real normed space and s1, s2 be sequences of X. Suppose s1

is convergent and there exists a natural number k such that s1 = s2 ↑ k.

Then s2 is convergent.

(16) Let X be a real normed space and s1, s2 be sequences of X. Suppose s1

is convergent and there exists a natural number k such that s1 = s2 ↑ k.

Then lim s2 = lim s1.

(17) For every real normed space X and for every sequence s1 of X such that

s1 is constant holds s1 is convergent.

(18) Let X be a real normed space and s1 be a sequence of X. If for every

natural number n holds s1(n) = 0X , then s1 is norm-summable.

Let X be a real normed space. Observe that there exists a sequence of X

which is norm-summable.

Next we state three propositions:

(19) Let X be a real normed space and s be a sequence of X. If s is summable,

then s is convergent and lim s = 0X .

(20) For every real normed space X and for all sequences s3, s4 of X holds

(
∑

κ

α=0(s3)(α))κ∈N + (
∑

κ

α=0(s4)(α))κ∈N = (
∑

κ

α=0(s3 + s4)(α))κ∈N.

(21) For every real normed space X and for all sequences s3, s4 of X holds

(
∑

κ

α=0(s3)(α))κ∈N − (
∑

κ

α=0(s4)(α))κ∈N = (
∑

κ

α=0(s3 − s4)(α))κ∈N.

Let X be a real normed space and let s1 be a norm-summable sequence of

X. Observe that ‖s1‖ is summable.

Let X be a real normed space. One can check that every sequence of X

which is summable is also convergent.

The following propositions are true:
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(22) Let X be a real normed space and s2, s5 be sequences of X. If s2 is

summable and s5 is summable, then s2+s5 is summable and
∑

(s2+s5) =
∑

s2 +
∑

s5.

(23) Let X be a real normed space and s2, s5 be sequences of X. If s2 is

summable and s5 is summable, then s2−s5 is summable and
∑

(s2−s5) =
∑

s2 −
∑

s5.

Let X be a real normed space and let s2, s5 be summable sequences of X.

One can verify that s2 + s5 is summable and s2 − s5 is summable.

We now state two propositions:

(24) For every real normed space X and for every sequence s1 of X and for

every real number z holds (
∑

κ

α=0(z · s1)(α))κ∈N = z · (
∑

κ

α=0(s1)(α))κ∈N.

(25) Let X be a real normed space, s1 be a summable sequence of X, and z

be a real number. Then z · s1 is summable and
∑

(z · s1) = z ·
∑

s1.

Let X be a real normed space, let z be a real number, and let s1 be a

summable sequence of X. Observe that z · s1 is summable.

One can prove the following two propositions:

(26) Let X be a real normed space and s, s3 be sequences of X. If for

every natural number n holds s3(n) = s(0), then (
∑

κ

α=0(s ↑ 1)(α))κ∈N =

(
∑

κ

α=0 s(α))κ∈N ↑ 1− s3.

(27) Let X be a real normed space and s be a sequence of X. If s is summable,

then for every natural number n holds s ↑ n is summable.

Let X be a real normed space, let s1 be a summable sequence of X, and let

n be a natural number. Observe that s1 ↑ n is summable.

Next we state the proposition

(28) Let X be a real normed space and s1 be a sequence of X. Then

(
∑

κ

α=0‖s1‖(α))κ∈N is upper bounded if and only if s1 is norm-summable.

Let X be a real normed space and let s1 be a norm-summable sequence of

X. One can check that (
∑

κ

α=0‖s1‖(α))κ∈N is upper bounded.

One can prove the following propositions:

(29) Let X be a real Banach space and s1 be a sequence of X. Then s1 is

summable if and only if for every real number p such that 0 < p there

exists a natural number n such that for every natural number m such that

n ¬ m holds ‖(
∑

κ

α=0(s1)(α))κ∈N(m)− (
∑

κ

α=0(s1)(α))κ∈N(n)‖ < p.

(30) Let X be a real normed space, s be a sequence of X, and n, m be natural

numbers. If n ¬ m, then ‖(
∑

κ

α=0 s(α))κ∈N(m) − (
∑

κ

α=0 s(α))κ∈N(n)‖ ¬

|(
∑

κ

α=0‖s‖(α))κ∈N(m)− (
∑

κ

α=0‖s‖(α))κ∈N(n)|.

(31) For every real Banach space X and for every sequence s1 of X such that

s1 is norm-summable holds s1 is summable.

(32) Let X be a real normed space, r1 be a sequence of real numbers, and s5

be a sequence of X. Suppose r1 is summable and there exists a natural
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number m such that for every natural number n such that m ¬ n holds

‖s5(n)‖ ¬ r1(n). Then s5 is norm-summable.

(33) Let X be a real normed space and s2, s5 be sequences of X. Suppose for

every natural number n holds 0 ¬ ‖s2‖(n) and ‖s2‖(n) ¬ ‖s5‖(n) and s5

is norm-summable. Then s2 is norm-summable and
∑

‖s2‖ ¬
∑

‖s5‖.

(34) Let X be a real normed space and s1 be a sequence of X. Suppose that

(i) for every natural number n holds ‖s1‖(n) > 0, and

(ii) there exists a natural number m such that for every natural number n

such that n ­ m holds ‖s1‖(n+1)
‖s1‖(n) ­ 1.

Then s1 is not norm-summable.

(35) Let X be a real normed space, s1 be a sequence of X, and r1 be a

sequence of real numbers. Suppose for every natural number n holds

r1(n) = n

√

‖s1‖(n) and r1 is convergent and lim r1 < 1. Then s1 is norm-

summable.

(36) Let X be a real normed space, s1 be a sequence of X, and r1 be a

sequence of real numbers. Suppose that

(i) for every natural number n holds r1(n) = n

√

‖s1‖(n), and

(ii) there exists a natural number m such that for every natural number n

such that m ¬ n holds r1(n) ­ 1.

Then ‖s1‖ is not summable.

(37) Let X be a real normed space, s1 be a sequence of X, and r1 be a

sequence of real numbers. Suppose for every natural number n holds

r1(n) = n

√

‖s1‖(n) and r1 is convergent and lim r1 > 1. Then s1 is not

norm-summable.

(38) Let X be a real normed space, s1 be a sequence of X, and r1 be a

sequence of real numbers. Suppose ‖s1‖ is non-increasing and for every

natural number n holds r1(n) = 2n · ‖s1‖(2
n). Then s1 is norm-summable

if and only if r1 is summable.

(39) Let X be a real normed space, s1 be a sequence of X, and p be a real

number. Suppose p > 1 and for every natural number n such that n ­ 1

holds ‖s1‖(n) = 1
np . Then s1 is norm-summable.

(40) Let X be a real normed space, s1 be a sequence of X, and p be a real

number. Suppose p ¬ 1 and for every natural number n such that n ­ 1

holds ‖s1‖(n) = 1
np . Then s1 is not norm-summable.

(41) LetX be a real normed space, s1 be a sequence ofX, and r1 be a sequence

of real numbers. Suppose for every natural number n holds s1(n) 6= 0X

and r1(n) = ‖s1‖(n+1)
‖s1‖(n) and r1 is convergent and lim r1 < 1. Then s1 is

norm-summable.

(42) Let X be a real normed space and s1 be a sequence of X. Suppose that

(i) for every natural number n holds s1(n) 6= 0X , and
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(ii) there exists a natural number m such that for every natural number n

such that n ­ m holds ‖s1‖(n+1)
‖s1‖(n) ­ 1.

Then s1 is not norm-summable.

Let X be a real Banach space. Observe that every sequence of X which is

norm-summable is also summable.

2. Basic Properties of Sequences of Banach Algebra

The scheme ExNCBASeq deals with a non empty normed algebra structure

A and a unary functor F yielding a point of A, and states that:

There exists a sequence S of A such that for every natural number

n holds S(n) = F(n)

for all values of the parameters.

The following proposition is true

(43) Let X be a Banach algebra, x, y, z be elements of X, and a, b be real

numbers. Then x+y = y+x and (x+y)+z = x+(y+z) and x+0X = x and

there exists an element t of X such that x+t = 0X and (x ·y) ·z = x ·(y ·z)

and 1·x = x and 0·x = 0X and a·0X = 0X and (−1)·x = −x and x·1X = x

and 1X ·x = x and x · (y + z) = x ·y +x · z and (y + z) ·x = y ·x+ z ·x and

a·(x·y) = (a·x)·y and a·(x+y) = a·x+a·y and (a+b)·x = a·x+b·x and

(a · b) ·x = a · (b ·x) and (a · b) · (x ·y) = a ·x · (b ·y) and a · (x ·y) = x · (a ·y)

and 0X · x = 0X and x · 0X = 0X and x · (y − z) = x · y − x · z and

(y − z) · x = y · x− z · x and (x + y)− z = x + (y − z) and (x− y) + z =

x− (y − z) and x− y − z = x− (y + z) and x + y = (x− z) + (z + y) and

x − y = (x − z) + (z − y) and x = (x − y) + y and x = y − (y − x) and

‖x‖ = 0 iff x = 0X and ‖a · x‖ = |a| · ‖x‖ and ‖x + y‖ ¬ ‖x‖ + ‖y‖ and

‖x · y‖ ¬ ‖x‖ · ‖y‖ and ‖1X‖ = 1 and X is complete.

Let X be a non empty multiplicative loop structure and let v be an element

of X. We say that v is invertible if and only if:

(Def. 8) There exists an element w of X such that v · w = 1X and w · v = 1X .

Let X be a non empty normed algebra structure, let S be a sequence of X,

and let a be an element of X. The functor a · S yielding a sequence of X is

defined by:

(Def. 9) For every natural number n holds (a · S)(n) = a · S(n).

Let X be a non empty normed algebra structure, let S be a sequence of X,

and let a be an element of X. The functor S · a yields a sequence of X and is

defined by:

(Def. 10) For every natural number n holds (S · a)(n) = S(n) · a.

Let X be a non empty normed algebra structure and let s2, s5 be sequences

of X. The functor s2 · s5 yielding a sequence of X is defined as follows:
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(Def. 11) For every natural number n holds (s2 · s5)(n) = s2(n) · s5(n).

Let X be a Banach algebra and let x be an element of X. Let us assume that

x is invertible. The functor x−1 yielding an element of X is defined as follows:

(Def. 12) x · x−1 = 1X and x−1 · x = 1X .

LetX be a Banach algebra and let z be an element ofX. The functor (zκ)κ∈N

yielding a sequence of X is defined as follows:

(Def. 13) (zκ)κ∈N(0) = 1X and for every natural number n holds (z
κ)κ∈N(n+1) =

(zκ)κ∈N(n) · z.

Let X be a Banach algebra, let z be an element of X, and let n be a natural

number. The functor zn

N
yields an element of X and is defined by:

(Def. 14) zn

N
= (zκ)κ∈N(n).

One can prove the following four propositions:

(44) For every Banach algebraX and for every element z of X holds z0
N

= 1X .

(45) For every Banach algebra X and for every element z of X such that

‖z‖ < 1 holds (zκ)κ∈N is summable and norm-summable.

(46) Let X be a Banach algebra and x be a point of X. If ‖1X −x‖ < 1, then

((1X − x)κ)κ∈N is summable and ((1X − x)κ)κ∈N is norm-summable.

(47) For every Banach algebra X and for every point x of X such that ‖1X −

x‖ < 1 holds x is invertible and x−1 =
∑

(((1X − x)κ)κ∈N).
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