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Summary. In this article, we introduce the new concept of 2’s complement
representation. Natural numbers that are congruent mod n can be represented

by the same n bits binary. Using the concept introduced here, negative numbers

that are congruent mod n also can be represented by the same n bit binary. We

also show some properties of addition of integers using this concept.

MML Identifier: BINARI 4.

The articles [16], [20], [2], [3], [12], [11], [10], [9], [17], [13], [14], [6], [7], [1], [15],

[18], [4], [21], [8], [5], and [19] provide the notation and terminology for this

paper.

1. Preliminaries

We follow the rules: n denotes a non empty natural number, j, k, l,m denote

natural numbers, and g, h, i denote integers.

We now state a number of propositions:

(1) If m > 0, then m · 2 ­ m + 1.

(2) For every natural number m holds 2m ­ m.

(3) For every natural number m holds 〈0, . . . , 0
︸ ︷︷ ︸

m

〉+ 〈0, . . . , 0
︸ ︷︷ ︸

m

〉 = 〈0, . . . , 0
︸ ︷︷ ︸

m

〉.

(4) For every natural number k such that k ¬ l and l ¬ m holds k = l or

k + 1 ¬ l and l ¬ m.
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(5) For every non empty natural number n and for all n-tuples x, y of

Boolean such that x = 〈0, . . . , 0
︸ ︷︷ ︸

n

〉 and y = 〈0, . . . , 0
︸ ︷︷ ︸

n

〉 holds carry(x, y) =

〈0, . . . , 0
︸ ︷︷ ︸

n

〉.

(6) For every non empty natural number n and for all n-tuples x, y of

Boolean such that x = 〈0, . . . , 0
︸ ︷︷ ︸

n

〉 and y = 〈0, . . . , 0
︸ ︷︷ ︸

n

〉 holds x+y = 〈0, . . . , 0
︸ ︷︷ ︸

n

〉.

(7) For every non empty natural number n and for every n-tuple F of

Boolean such that F = 〈0, . . . , 0
︸ ︷︷ ︸

n

〉 holds Intval(F ) = 0.

(8) If l + m ¬ k − 1, then l < k and m < k.

(9) If g ¬ h + i and h < 0 and i < 0, then g < h and g < i.

(10) If l + m ¬ 2n − 1, then add ovfl(n -BinarySequence(l),

n -BinarySequence(m)) = false.

(11) For every non empty natural number n and for all natural numbers

l, m such that l + m ¬ 2n − 1 holds Absval((n -BinarySequence(l)) +

(n -BinarySequence(m))) = l + m.

(12) For every non empty natural number n and for every n-tuple z of Boolean

such that zn = true holds Absval(z) ­ 2n−′1.

(13) If l + m ¬ 2n−′1 − 1, then (carry(n -BinarySequence(l),

n -BinarySequence(m)))n = false.

(14) For every non empty natural number n such that l+m ¬ 2n−′1−1 holds

Intval((n -BinarySequence(l)) + (n -BinarySequence(m))) = l + m.

(15) For every 1-tuple z of Boolean such that z = 〈true〉 holds Intval(z) = −1.

(16) For every 1-tuple z of Boolean such that z = 〈false〉 holds Intval(z) = 0.

(17) For every boolean set x holds true ∨ x = true.

(18) For every non empty natural number n holds 0 ¬ 2n−′1−1 and −2n−′1 ¬

0.

(19) For all n-tuples x, y of Boolean such that x = 〈0, . . . , 0
︸ ︷︷ ︸

n

〉 and y =

〈0, . . . , 0
︸ ︷︷ ︸

n

〉 holds x and y are summable.

(20) i · nmod n = 0.

2. Majorant Power

Let m, j be natural numbers. The functor MajP(m, j) yielding a natural

number is defined as follows:
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(Def. 1) 2MajP(m,j) ­ j and MajP(m, j) ­ m and for every natural number k

such that 2k ­ j and k ­ m holds k ­ MajP(m, j).

One can prove the following propositions:

(21) If j ­ k, then MajP(m, j) ­ MajP(m, k).

(22) If l ­ m, then MajP(l, j) ­ MajP(m, j).

(23) If m ­ 1, then MajP(m, 1) = m.

(24) If j ¬ 2m, then MajP(m, j) = m.

(25) If j > 2m, then MajP(m, j) > m.

3. 2’s Complement

Let m be a natural number and let i be an integer.

The functor 2sComplement(m, i) yields a m-tuple of Boolean and is defined

by:

(Def. 2) 2sComplement(m, i) =

{
m -BinarySequence(|2MajP(m,|i|) + i|), if i < 0,

m -BinarySequence(|i|), otherwise.

The following propositions are true:

(26) For every natural number m holds 2sComplement(m, 0) = 〈0, . . . , 0
︸ ︷︷ ︸

m

〉.

(27) For every integer i such that i ¬ 2n−′1 − 1 and −2n−′1 ¬ i holds

Intval(2sComplement(n, i)) = i.

(28) For all integers h, i such that h ­ 0 and i ­ 0 or h < 0 and i < 0 but

hmod 2n = imod 2n holds 2sComplement(n, h) = 2sComplement(n, i).

(29) For all integers h, i such that h ­ 0 and i ­ 0 or h < 0 and i < 0 but

h ≡ i(mod 2n) holds 2sComplement(n, h) = 2sComplement(n, i).

(30) For all natural numbers l, m such that l mod 2n = m mod 2n holds

n -BinarySequence(l) = n -BinarySequence(m).

(31) For all natural numbers l, m such that l ≡ m(mod 2n) holds

n -BinarySequence(l) = n -BinarySequence(m).

(32) For every natural number j such that 1 ¬ j and j ¬ n holds

(2sComplement(n + 1, i))j = (2sComplement(n, i))j .

(33) There exists an element x of Boolean such that 2sComplement(m+1, i) =

(2sComplement(m, i)) a 〈x〉.

(34) There exists an element x of Boolean such that (m+1) -BinarySequence(l) =

(m -BinarySequence(l)) a 〈x〉.

(35) Let n be a non empty natural number. Suppose −2n ¬ h + i and h < 0

and i < 0 and−2n−′1 ¬ h and−2n−′1 ¬ i. Then (carry(2sComplement(n+

1, h), 2sComplement(n + 1, i)))n+1 = true.
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(36) For every non empty natural number n such that −2n−′1 ¬ h + i and

h + i ¬ 2n−′1 − 1 and h ­ 0 and i ­ 0 holds Intval(2sComplement(n, h) +

2sComplement(n, i)) = h + i.

(37) Let n be a non empty natural number. Suppose −2(n+1)−′1 ¬ h + i and

h+ i ¬ 2(n+1)−′1−1 and h < 0 and i < 0 and −2n−′1 ¬ h and −2n−′1 ¬ i.

Then Intval(2sComplement(n + 1, h) + 2sComplement(n + 1, i)) = h + i.

(38) Let n be a non empty natural number. Suppose that −2n−′1 ¬ h and

h ¬ 2n−′1 − 1 and −2n−′1 ¬ i and i ¬ 2n−′1 − 1 and −2n−′1 ¬ h + i

and h + i ¬ 2n−′1 − 1 and h ­ 0 and i < 0 or h < 0 and i ­ 0. Then

Intval(2sComplement(n, h) + 2sComplement(n, i)) = h + i.
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