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The articles [25], [20], [8], [9], [1], [23], [18], [24], [19], [26], [22], [6], [3], [7], [14],

[4], [17], [15], [16], [2], [11], [12], [13], [21], and [5] provide the terminology and

notation for this paper.

The following two propositions are true:

(1) For every set x and for every non empty setD holds x∩
⋃

D =
⋃
{x∩d : d

ranges over elements of D}.

(2) Let R be a non empty reflexive transitive relational structure and D be

a non empty directed subset of 〈Ids(R),⊆〉. Then
⋃

D is an ideal of R.

Let R be a non empty reflexive transitive relational structure. Observe that

〈Ids(R),⊆〉 is up-complete.

We now state two propositions:

(3) Let R be a non empty reflexive transitive relational structure and D be

a non empty directed subset of 〈Ids(R),⊆〉. Then supD =
⋃

D.

(4) Let R be a semilattice, D be a non empty directed subset of 〈Ids(R),⊆〉,

and x be an element of 〈Ids(R),⊆〉. Then sup({x} ⊓ D) =
⋃
{x ∩ d : d

ranges over elements of D}.

Let R be a semilattice. Observe that 〈Ids(R),⊆〉 satisfies MC.

Let R be a non empty trivial relational structure. Note that every topological

augmentation of R is trivial.

Next we state three propositions:
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(5) Let S be a Scott complete top-lattice, T be a complete lattice, and A be

a Scott topological augmentation of T . Suppose the relational structure

of S = the relational structure of T . Then the FR-structure of A = the

FR-structure of S.

(6) Let N be a Lawson complete top-lattice, T be a complete lattice, and A

be a Lawson correct topological augmentation of T . Suppose the relational

structure of N = the relational structure of T . Then the FR-structure of

A = the FR-structure of N .

(7) Let N be a Lawson complete top-lattice, S be a Scott topological au-

gmentation of N , A be a subset of N , and J be a subset of S. If A = J

and J is closed, then A is closed.

Let A be a complete lattice. Observe that λ(A) is non empty.

Let S be a Scott complete top-lattice. Observe that 〈σ(S),⊆〉 is complete

and non trivial.

Let N be a Lawson complete top-lattice. Observe that 〈σ(N),⊆〉 is complete

and non trivial and 〈λ(N),⊆〉 is complete and non trivial.

The following propositions are true:

(8) Let T be a non empty reflexive relational structure. Then σ(T ) ⊆ {W \

↑F ; W ranges over subsets of T , F ranges over subsets of T : W ∈ σ(T ) ∧

F is finite}.

(9) For every Lawson complete top-lattice N holds λ(N) = the topology of

N .

(10) For every Lawson complete top-lattice N holds σ(N) ⊆ λ(N).

(11) Let M , N be complete lattices. Suppose the relational structure ofM =

the relational structure of N . Then λ(M) = λ(N).

(12) For every Lawson complete top-lattice N and for every subset X of N

holds X ∈ λ(N) iff X is open.

Let us note that every reflexive non empty FR-structure which is trivial and

topological space-like is also Scott.

Let us observe that every complete top-lattice which is trivial is also Lawson.

Let us note that there exists a complete top-lattice which is strict, continu-

ous, lower-bounded, meet-continuous, and Scott.

One can verify that there exists a complete top-lattice which is strict, con-

tinuous, compact, Hausdorff, and Lawson.

Next we state the proposition

(13) Let N be a meet-continuous lattice and A be a subset of N . If A has the

property (S), then ↑A has the property (S).

Let N be a meet-continuous lattice and let A be a property(S) subset of N .

Note that ↑A is property(S).

We now state several propositions:
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(14) Let N be a meet-continuous Lawson complete top-lattice, S be a Scott

topological augmentation of N , and A be a subset of N . If A ∈ λ(N), then

↑A ∈ σ(S).

(15) Let N be a meet-continuous Lawson complete top-lattice, S be a Scott

topological augmentation of N , A be a subset of N , and J be a subset of

S. If A = J, then if A is open, then ↑J is open.

(16) Let N be a meet-continuous Lawson complete top-lattice, S be a Scott

topological augmentation of N , x be a point of S, y be a point of N , and

J be a basis of y. If x = y, then {↑A; A ranges over subsets of N : A ∈ J}

is a basis of x.

(17) Let N be a meet-continuous Lawson complete top-lattice, S be a Scott

topological augmentation of N , X be an upper subset of N , and Y be a

subset of S. If X = Y, then IntX = IntY.

(18) Let N be a meet-continuous Lawson complete top-lattice, S be a Scott

topological augmentation of N , X be a lower subset of N , and Y be a

subset of S. If X = Y, then X = Y .

(19) Let M , N be complete lattices, L1 be a Lawson correct topological au-

gmentation ofM , and L2 be a Lawson correct topological augmentation of

N . Suppose 〈σ(N),⊆〉 is continuous. Then the topology of [:L1, (L2 qua

topological space) :] = λ([:M, N :]).

(20) Let M , N be complete lattices, P be a Lawson correct topological au-

gmentation of [:M, N :], Q be a Lawson correct topological augmentation

of M , and R be a Lawson correct topological augmentation of N . Sup-

pose 〈σ(N),⊆〉 is continuous. Then the topological structure of P = [:Q,

(R qua topological space) :].

(21) For every meet-continuous Lawson complete top-lattice N and for every

element x of N holds x ⊓¤ is continuous.

Let N be a meet-continuous Lawson complete top-lattice and let x be an

element of N . Observe that x ⊓¤ is continuous.

One can prove the following propositions:

(22) For every meet-continuous Lawson complete top-lattice N such that

〈σ(N),⊆〉 is continuous holds N satisfies conditions of topological semi-

lattice.

(23) Let N be a meet-continuous Lawson complete top-lattice. Suppose

〈σ(N),⊆〉 is continuous. Then N is Hausdorff if and only if for every

subset X of [:N, (N qua topological space) :] such that X = the internal

relation of N holds X is closed.

Let N be a non empty reflexive relational structure and let X be a subset

of the carrier of N . The functor X0 yields a subset of N and is defined by:

(Def. 1) X0 = {u; u ranges over elements ofN :
∧

D : non empty directed subset of N
(u ¬
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supD ⇒ X ∩D 6= ∅)}.

Let N be a non empty reflexive antisymmetric relational structure and let

X be an empty subset of the carrier of N . One can check that X0 is empty.

One can prove the following propositions:

(24) For every non empty reflexive relational structure N and for all subsets

A, J of N such that A ⊆ J holds A0 ⊆ J0.

(25) For every non empty reflexive relational structure N and for every ele-

ment x of N holds ↑x0 = ↑↑x.

(26) For every Scott top-lattice N and for every upper subset X of N holds

IntX ⊆ X0.

(27) For every non empty reflexive relational structure N and for all subsets

X, Y of N holds X0 ∪ Y 0 ⊆ X ∪ Y 0.

(28) For every meet-continuous lattice N and for all upper subsets X, Y of

N holds X0 ∪ Y 0 = X ∪ Y 0.

(29) Let S be a meet-continuous Scott top-lattice and F be a finite subset of

S. Then Int↑F ⊆
⋃
{↑↑x; x ranges over elements of S: x ∈ F}.

(30) Let N be a Lawson complete top-lattice. Then N is continuous if and

only if N is meet-continuous and Hausdorff.

Let us note that every complete top-lattice which is continuous and Lawson is

also Hausdorff and every complete top-lattice which is meet-continuous, Lawson,

and Hausdorff is also continuous.

Let N be a non empty FR-structure. We say that N has small semilattices

if and only if the condition (Def. 2) is satisfied.

(Def. 2) Let x be a point of N . Then there exists a generalized basis J of x such

that for every subset A of N if A ∈ J, then sub(A) is meet-inheriting.

We say that N has compact semilattices if and only if the condition (Def. 3) is

satisfied.

(Def. 3) Let x be a point of N . Then there exists a generalized basis J of x such

that for every subset A of N if A ∈ J, then sub(A) is meet-inheriting and

A is compact.

We say that N has open semilattices if and only if the condition (Def. 4) is

satisfied.

(Def. 4) Let x be a point of N . Then there exists a basis J of x such that for

every subset A of N if A ∈ J, then sub(A) is meet-inheriting.

One can verify the following observations:

∗ every non empty topological space-like FR-structure which has open

semilattices has also small semilattices,

∗ every non empty topological space-like FR-structure which has compact

semilattices has also small semilattices,
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∗ every non empty FR-structure which is anti-discrete has small semilat-

tices and open semilattices, and

∗ every non empty FR-structure which is reflexive, trivial, and topological

space-like has compact semilattices.

Let us mention that there exists a top-lattice which is strict, trivial, and

lower.

We now state several propositions:

(31) Let N be top-poset with g.l.b.’s satisfying conditions of topological semi-

lattice and C be a subset of N . If sub(C) is meet-inheriting, then sub(C)

is meet-inheriting.

(32) Let N be a meet-continuous Lawson complete top-lattice and S be a

Scott topological augmentation of N . Then for every point x of S there

exists a basis J of x such that for every subset W of S such that W ∈ J

holds W is a filter of S if and only if N has open semilattices.

(33) Let N be a Lawson complete top-lattice, S be a Scott topological au-

gmentation of N , and x be an element of N . Then {inf A; A ranges over

subsets of S: x ∈ A ∧ A ∈ σ(S)} ⊆ {inf J ; J ranges over subsets of N :

x ∈ J ∧ J ∈ λ(N)}.

(34) Let N be a meet-continuous Lawson complete top-lattice, S be a Scott

topological augmentation of N , and x be an element of N . Then {inf A; A

ranges over subsets of S: x ∈ A ∧ A ∈ σ(S)} = {inf J ; J ranges over

subsets of N : x ∈ J ∧ J ∈ λ(N)}.

(35) Let N be a meet-continuous Lawson complete top-lattice. Then N is

continuous if and only if N has open semilattices and 〈σ(N),⊆〉 is conti-

nuous.

One can check that every Lawson complete top-lattice which is continuous

has open semilattices.

Let N be a continuous Lawson complete top-lattice. One can check that

〈σ(N),⊆〉 is continuous.

We now state several propositions:

(36) Every continuous Lawson complete top-lattice is compact and Hausdorff

and has open semilattices and satisfies conditions of topological semilat-

tice.

(37) Every Hausdorff Lawson complete top-lattice with open semilattices sa-

tisfying conditions of topological semilattice has compact semilattices.

(38) Let N be a meet-continuous Hausdorff Lawson complete top-lattice and

x be an element of N . Then x =
⊔

N
{inf V ; V ranges over subsets of N :

x ∈ V ∧ V ∈ λ(N)}.

(39) Let N be a meet-continuous Lawson complete top-lattice. Then N is

continuous if and only if for every element x of N holds x =
⊔

N
{inf V ; V
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ranges over subsets of N : x ∈ V ∧ V ∈ λ(N)}.

(40) Let N be a meet-continuous Lawson complete top-lattice. Then N is

algebraic if and only if N has open semilattices and 〈σ(N),⊆〉 is algebraic.

Let N be a meet-continuous algebraic Lawson complete top-lattice. Note

that 〈σ(N),⊆〉 is algebraic.
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