
FORMALIZED MATHEMATICS

Volume 8, Number 1, 1999

University of Białystok

Insert Sort on SCMFSA
1

Jing-Chao Chen

Shanghai Jiaotong University

Summary. This article describes the insert sorting algorithm using macro
instructions such as if-Macro (conditional branch macro instructions), for-loop
macro instructions and While-Macro instructions etc. From the viewpoint of
initialization, we generalize the halting and computing problem of the While-
Macro. Generally speaking, it is difficult to judge whether the While-Macro is
halting or not by way of loop inspection. For this reason, we introduce a practical
and simple method, called body-inspection. That is, in many cases, we can prove
the halting problem of the While-Macro by only verifying the nature of the body
of the While-Macro, rather than the While-Macro itself. In fact, we have used
this method in justifying the halting of the insert sorting algorithm. Finally, we
prove that the insert sorting algorithm given in the article is autonomic and its
computing result is correct.

MML Identifier: SCMISORT.

The articles [28], [39], [20], [8], [13], [40], [14], [38], [15], [16], [12], [7], [10], [9],

[23], [30], [11], [26], [34], [31], [32], [33], [25], [5], [6], [3], [1], [17], [2], [35], [37],

[18], [27], [29], [24], [4], [22], [19], [21], and [36] provide the terminology and

notation for this paper.

1. Preliminaries

Let i be a good instruction of SCMFSA. Observe that Macro(i) is good.

Let a be a read-write integer location and let b be an integer location. Note

that AddTo(a, b) is good.

We now state several propositions:

1This research is supported by the National Natural Science Foundation of China Grant
No. 69873033.

119
c© 1999 University of Białystok

ISSN 1426–2630

120 jing-chao chen

(1) For every function f and for all sets d, r such that d ∈ dom f holds

dom f = dom(f+·(d 7−→. r)).

(2) Let p be a programmed finite partial state of SCMFSA, l be an

instruction-location of SCMFSA, and i1 be an instruction of SCMFSA.

Suppose l ∈ dom p and there exists an instruction p1 of SCMFSA such that

p1 = p(l) and UsedIntLoc(p1) = UsedIntLoc(i1). Then UsedIntLoc(p) =

UsedIntLoc(p+·(l 7−→. i1)).

(3) For every integer location a and for every macro instruction I holds

(if a > 0 then I;Goto(insloc(0)) else (StopSCMFSA))(insloc(card I +

4)) = goto insloc(card I + 4).

(4) Let p be a programmed finite partial state of SCMFSA, l be an

instruction-location of SCMFSA, and i1 be an instruction of SCMFSA.

Suppose l ∈ dom p and there exists an instruction p1 of SCMFSA
such that p1 = p(l) and UsedInt∗ Loc(p1) = UsedInt∗ Loc(i1). Then

UsedInt∗ Loc(p) = UsedInt∗ Loc(p+·(l 7−→. i1)).

(5) For every natural number k holds k + 1 > 0.

For simplicity, we adopt the following convention: s is a state of SCMFSA, I

is a macro instruction, a is a read-write integer location, and j, k, n are natural

numbers.

Next we state a number of propositions:

(6) For every state s of SCMFSA and for every macro instruction I such

that s(intloc(0)) = 1 and ICs = insloc(0) holds s+·I = s+· Initialized(I).

(7) Let I be a macro instruction and a, b be integer locations. If I does not

destroy b, then while a > 0 do I does not destroy b.

(8) If n ¬ 11, then n = 0 or n = 1 or n = 2 or n = 3 or n = 4 or n = 5 or

n = 6 or n = 7 or n = 8 or n = 9 or n = 10 or n = 11.

(9) Let f , g be finite sequences of elements of Z andm, n be natural numbers.

Suppose 1 ¬ n and n ¬ len f and 1 ¬ m and m ¬ len f and g = f +·

(m,πnf) +· (n, πmf). Then

(i) f(m) = g(n),

(ii) f(n) = g(m),

(iii) for every set k such that k 6= m and k 6= n and k ∈ dom f holds

f(k) = g(k), and

(iv) f and g are fiberwise equipotent.

(10) Let s be a state of SCMFSA and I be a macro instruction. Sup-

pose I is halting on Initialize(s). Let a be an integer location. Then

(IExec(I, s))(a) = (Computation(Initialize(s)+·(I+·Start-At(insloc(0)))))

(LifeSpan(Initialize(s)+·(I+·Start-At(insloc(0)))))(a).

(11) Let s1, s2 be states of SCMFSA and I be a InitHalting ma-

cro instruction. Suppose Initialized(I) ⊆ s1 and Initialized(I) ⊆

insert sort on SCMFSA 121

s2 and s1 and s2 are equal outside the instruction locations of

SCMFSA. Let k be a natural number. Then (Computation(s1))(k)

and (Computation(s2))(k) are equal outside the instruction locations of

SCMFSA and CurInstr((Computation(s1))(k)) = CurInstr((Computation

(s2))(k)).

(12) Let s1, s2 be states of SCMFSA and I be a InitHalting macro in-

struction. Suppose Initialized(I) ⊆ s1 and Initialized(I) ⊆ s2 and s1

and s2 are equal outside the instruction locations of SCMFSA. Then

LifeSpan(s1) = LifeSpan(s2) and Result(s1) and Result(s2) are equal out-

side the instruction locations of SCMFSA.

(13) For every macro instruction I and for every finite sequence location f

holds f /∈ dom I.

(14) For every macro instruction I and for every integer location a holds

a /∈ dom I.

(15) Let N be a non empty set with non empty elements, S be a hal-

ting von Neumann definite AMI over N , and s be a state of S.

If LifeSpan(s) ¬ j and s is halting, then (Computation(s))(j) =

(Computation(s))(LifeSpan(s)).

2. Basic Property of while Macro

We now state several propositions:

(16) Let s be a state of SCMFSA, I be a macro instruction, and a be a

read-write integer location. Suppose s(a) ¬ 0. Then while a > 0 do I is

halting onInit s and while a > 0 do I is closed onInit s.

(17) Let a be an integer location, I be a macro instruction, s be a state of

SCMFSA, and k be a natural number. Suppose that

(i) I is closed onInit s,

(ii) I is halting onInit s,

(iii) k < LifeSpan(s+· Initialized(I)),

(iv) IC(Computation(s+· Initialized(while a>0 do I)))(1+k) =

IC(Computation(s+· Initialized(I)))(k) + 4, and

(v) (Computation(s+· Initialized(while a > 0 do I)))(1 + k)↾D =

(Computation(s+· Initialized(I)))(k)↾D.

Then IC(Computation(s+· Initialized(while a>0 do I)))(1+k+1) =

IC(Computation(s+· Initialized(I)))(k+1) + 4 and (Computation(s+· Initialized

(while a > 0 do I)))(1+k+1)↾D = (Computation(s+· Initialized(I)))(k+

1)↾D, where D = Int-Locations∪FinSeq-Locations.

122 jing-chao chen

(18) Let a be an integer location, I be a macro instruction, and s be a

state of SCMFSA. Suppose I is closed onInit s and I is halting onInit s

and IC(Computation(s+· Initialized(while a>0 do I)))(1+LifeSpan(s+· Initialized(I))) =

IC(Computation(s+· Initialized(I)))(LifeSpan(s+· Initialized(I))) + 4.

Then CurInstr((Computation(s+· Initialized(while a > 0 do I)))(1 +

LifeSpan(s+· Initialized(I)))) = goto insloc(card I + 4).

(19) Let s be a state of SCMFSA, I be a macro instruction,

and a be a read-write integer location. Suppose I is closed

onInit s and I is halting onInit s and s(a) > 0. Then

IC(Computation(s+· Initialized(while a>0 do I)))(LifeSpan(s+· Initialized(I))+3) =

insloc(0) and for every natural number k such that k ¬ LifeSpan(s+·

Initialized(I)) + 3 holds IC(Computation(s+· Initialized(while a>0 do I)))(k) ∈

dom(while a > 0 do I).

(20) Let s be a state of SCMFSA, I be a macro instruction, and

a be a read-write integer location. Suppose I is closed onI-

nit s and I is halting onInit s and s(a) > 0. Let k be

a natural number. If k ¬ LifeSpan(s+· Initialized(I)) + 3, then

IC(Computation(s+· Initialized(while a>0 do I)))(k) ∈ dom(while a > 0 do I).

(21) Let s be a state of SCMFSA, I be a macro instruction,

and a be a read-write integer location. Suppose I is closed

onInit s and I is halting onInit s and s(a) > 0. Then

IC(Computation(s+· Initialized(while a>0 do I)))(LifeSpan(s+· Initialized(I))+3) =

insloc(0) and (Computation(s+· Initialized(while a > 0 do I)))(LifeSpan

(s+· Initialized(I)) + 3)↾D = (Computation(s+· Initialized(I)))(LifeSpan

(s+· Initialized(I)))↾D, where D = Int-Locations∪FinSeq-Locations.

(22) Let s be a state of SCMFSA, I be a InitHalting macro instruction, and

a be a read-write integer location. Suppose s(a) > 0. Then there exists a

state s2 of SCMFSA and there exists a natural number k such that

(i) s2 = s+· Initialized(while a > 0 do I),

(ii) k = LifeSpan(s+· Initialized(I)) + 3,

(iii) IC(Computation(s2))(k) = insloc(0),

(iv) for every integer location b holds (Computation(s2))(k)(b) =

(IExec(I, s))(b), and

(v) for every finite sequence location f holds (Computation(s2))(k)(f) =

(IExec(I, s))(f).

Let us consider s, I, a. The functor StepWhile>0 (a, s, I) yields a function

from N into
∏
(the object kind of SCMFSA) and is defined by the conditions

(Def. 1).

(Def. 1)(i) (StepWhile>0 (a, s, I))(0) = s qua element of
∏
(the object kind of

SCMFSA) qua non empty set, and

insert sort on SCMFSA 123

(ii) for every natural number i and for every element x of
∏
(the object kind of SCMFSA) qua non empty set such that

x = (StepWhile>0 (a, s, I))(i) holds (StepWhile>0 (a, s, I))(i + 1) =

(Computation(x+· Initialized(while a > 0 do I)))(LifeSpan(x+· Initialized

(I)) + 3).

We now state several propositions:

(23) (StepWhile>0 (a, s, I))(0) = s.

(24) (StepWhile>0 (a, s, I))(k+1) = (Computation((StepWhile>0 (a, s, I))(k)

+· Initialized(while a > 0 do I)))(LifeSpan((StepWhile>0 (a, s, I))(k)+·

Initialized(I)) + 3).

(25) (StepWhile>0 (a, s, I))(k+1) = (StepWhile>0 (a, (StepWhile>0 (a, s, I))

(k), I))(1).

(26) Let I be a macro instruction, a be a read-write integer location,

and s be a state of SCMFSA. Then (StepWhile>0 (a, s, I))(0 + 1) =

(Computation(s+· Initialized(while a > 0 do I)))(LifeSpan(s+· Initialized

(I)) + 3).

(27) Let I be a macro instruction, a be a read-write integer location,

s be a state of SCMFSA, and k, n be natural numbers. Suppose

IC(StepWhile>0 (a,s,I))(k) = insloc(0) and (StepWhile>0 (a, s, I))(k) =

(Computation(s+· Initialized(while a > 0 do I)))(n) and (StepWhile>0

(a, s, I))(k)(intloc(0)) = 1.

Then (StepWhile>0 (a, s, I))(k) = (StepWhile>0 (a, s, I))(k)+· Initialized

(while a > 0 do I) and (StepWhile>0 (a, s, I))(k+1) = (Computation(s+·

Initialized(while a > 0 do I)))(n+(LifeSpan((StepWhile>0 (a, s, I))(k)+·

Initialized(I)) + 3)).

(28) Let I be a macro instruction, a be a read-write integer location, and s

be a state of SCMFSA. Given a function f from
∏
(the object kind of

SCMFSA) into N such that let k be a natural number. Then

(i) if f((StepWhile>0 (a, s, I))(k)) 6= 0, then f((StepWhile>0 (a, s, I))(k+

1)) < f((StepWhile>0 (a, s, I))(k)) and I is closed onInit (StepWhile>0

(a, s, I))(k) and I is halting onInit (StepWhile>0 (a, s, I))(k),

(ii) (StepWhile>0 (a, s, I))(k + 1)(intloc(0)) = 1, and

(iii) f((StepWhile>0 (a, s, I))(k)) = 0 iff (StepWhile>0 (a, s, I))(k)(a) ¬ 0.

Then while a > 0 do I is halting onInit s and while a > 0 do I is closed

onInit s.

(29) Let I be a good InitHalting macro instruction and a be a read-write inte-

ger location. Suppose that for every state s of SCMFSA such that s(a) > 0

holds (IExec(I, s))(a) < s(a). Then while a > 0 do I is InitHalting.

(30) Let I be a good InitHalting macro instruction and a be a read-

write integer location. Suppose that for every state s of SCMFSA holds

124 jing-chao chen

(IExec(I, s))(a) < s(a) or (IExec(I, s))(a) ¬ 0. Then while a > 0 do I is

InitHalting.

Let D be a set, let f be a function from D into Z, and let d be an element

of D. Then f(d) is an integer.

One can prove the following propositions:

(31) Let I be a good InitHalting macro instruction and a be a read-write

integer location. Given a function f from
∏
(the object kind of SCMFSA)

into Z such that let s, t be states of SCMFSA. Then

(i) if f(s) > 0, then f(IExec(I, s)) < f(s),

(ii) if s↾D = t↾D, then f(s) = f(t), and

(iii) f(s) ¬ 0 iff s(a) ¬ 0.

Then while a > 0 do I is InitHalting, where

D = Int-Locations∪FinSeq-Locations.

(32) Let s be a state of SCMFSA, I be a macro instruction,

and a be a read-write integer location. If s(a) ¬ 0, then

IExec(while a > 0 do I, s)↾(Int-Locations∪FinSeq-Locations) =

Initialize(s)↾(Int-Locations∪FinSeq-Locations).

(33) Let s be a state of SCMFSA, I be a good InitHalting ma-

cro instruction, and a be a read-write integer location. If s(a) >

0 and while a > 0 do I is InitHalting, then IExec(while a >

0 do I, s)↾(Int-Locations∪FinSeq-Locations) = IExec(while a >

0 do I, IExec(I, s))↾(Int-Locations∪FinSeq-Locations).

(34) Let s be a state of SCMFSA, I be a macro instruction, f be a finite

sequence location, and a be a read-write integer location. If s(a) ¬ 0, then

(IExec(while a > 0 do I, s))(f) = s(f).

(35) Let s be a state of SCMFSA, I be a macro instruction, b be an inte-

ger location, and a be a read-write integer location. If s(a) ¬ 0, then

(IExec(while a > 0 do I, s))(b) = (Initialize(s))(b).

(36) Let s be a state of SCMFSA, I be a good InitHalting macro instruction,

f be a finite sequence location, and a be a read-write integer location.

If s(a) > 0 and while a > 0 do I is InitHalting, then (IExec(while a >

0 do I, s))(f) = (IExec(while a > 0 do I, IExec(I, s)))(f).

(37) Let s be a state of SCMFSA, I be a good InitHalting macro instruc-

tion, b be an integer location, and a be a read-write integer location. If

s(a) > 0 and while a > 0 do I is InitHalting, then (IExec(while a >

0 do I, s))(b) = (IExec(while a > 0 do I, IExec(I, s)))(b).

insert sort on SCMFSA 125

3. Insert Sort Algorithm

Let f be a finite sequence location. The functor insert− sort f yields a macro

instruction and is defined as follows:

(Def. 2) insert− sort f = i2;(a1:=lenf);SubFrom(a1, a0);Times(a1, (a2:=lenf);

SubFrom(a2, a1);(a3:=a2);AddTo(a3, a0);(a6:=fa3
);SubFrom(a4, a4);

(while a2 > 0 do ((a5:=fa2
);SubFrom(a5, a6);(if a5 > 0 then Macro

(SubFrom(a2, a2)) else (AddTo(a4, a0);SubFrom(a2, a0)))));Times(a4,

(a2:=a3);SubFrom(a3, a0);(a5:=fa2
);(a6:=fa3

);(fa2
:=a6);(fa3

:=a5))), where

i2 = (a2:=a0);(a3:=a0);(a4:=a0);(a5:=a0);(a6:=a0), a2 = intloc(2), a0 =

intloc(0), a3 = intloc(3), a4 = intloc(4), a5 = intloc(5), a6 = intloc(6),

and a1 = intloc(1).

The macro instruction Insert− Sort−Algorithm is defined by:

(Def. 3) Insert− Sort−Algorithm = insert− sort fsloc(0).

We now state a number of propositions:

(38) For every finite sequence location f holds UsedIntLoc(insert− sort f) =

{a0, a1, a2, a3, a4, a5, a6}, where a0 = intloc(0), a1 = intloc(1), a2 =

intloc(2), a3 = intloc(3), a4 = intloc(4), a5 = intloc(5), and a6 = intloc(6).

(39) For every finite sequence location f holds UsedInt∗ Loc(insert− sort f) =

{f}.

(40) For all instructions k1, k2, k3, k4 of SCMFSA holds card(k1;k2;k3;k4) = 8.

(41) For all instructions k1, k2, k3, k4, k5 of SCMFSA holds

card(k1;k2;k3;k4;k5) = 10.

(42) For every finite sequence location f holds card insert− sort f = 82.

(43) For every finite sequence location f and for every natural number k such

that k < 82 holds insloc(k) ∈ dom insert− sort f.

(44) insert− sort fsloc(0) is keepInt0 1 and InitHalting.

(45) Let s be a state of SCMFSA. Then

(i) s(f0) and (IExec(insert− sort f0, s))(f0) are fiberwise equipotent, and

(ii) for all natural numbers i, j such that i 1 and j ¬ len s(f0) and i < j

and for all integers x1, x2 such that x1 = (IExec(insert− sort f0, s))(f0)(i)

and x2 = (IExec(insert− sort f0, s))(f0)(j) holds x1 x2,

where f0 = fsloc(0).

(46) Let i be a natural number, s be a state of SCMFSA, and w be a finite se-

quence of elements of Z. If Initialized(Insert− Sort−Algorithm)+·(fsloc(0)

7−→. w) ⊆ s, then IC(Computation(s))(i) ∈ dom Insert− Sort−Algorithm .

(47) Let s be a state of SCMFSA and t be a finite sequence of elements of Z.

Suppose Initialized(Insert− Sort−Algorithm)+·(fsloc(0)7−→. t) ⊆ s. Then

there exists a finite sequence u of elements of R such that

126 jing-chao chen

(i) t and u are fiberwise equipotent,

(ii) u is non-increasing and a finite sequence of elements of Z, and

(iii) (Result(s))(fsloc(0)) = u.

(48) For every finite sequence w of elements of Z holds

Initialized(Insert− Sort−Algorithm)+·(fsloc(0)7−→. w) is autonomic.

(49) Initialized(Insert− Sort−Algorithm) computes Sorting-Function.

References

[1] Noriko Asamoto. Conditional branch macro instructions of SCMFSA. Part I. Formalized
Mathematics, 6(1):65–72, 1997.

[2] Noriko Asamoto. Conditional branch macro instructions of SCMFSA. Part II. Formalized
Mathematics, 6(1):73–80, 1997.

[3] Noriko Asamoto. Constant assignment macro instructions of SCMFSA. Part II. Forma-
lized Mathematics, 6(1):59–63, 1997.

[4] Noriko Asamoto. The loop and Times macroinstruction for SCMFSA. Formalized Ma-
thematics, 6(4):483–497, 1997.

[5] Noriko Asamoto, Yatsuka Nakamura, Piotr Rudnicki, and Andrzej Trybulec. On the
composition of macro instructions. Part II. Formalized Mathematics, 6(1):41–47, 1997.

[6] Noriko Asamoto, Yatsuka Nakamura, Piotr Rudnicki, and Andrzej Trybulec. On the
composition of macro instructions. Part III. Formalized Mathematics, 6(1):53–57, 1997.

[7] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
[8] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41–46, 1990.

[9] Grzegorz Bancerek. König’s theorem. Formalized Mathematics, 1(3):589–593, 1990.
[10] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107–114, 1990.

[11] Grzegorz Bancerek and Piotr Rudnicki. Development of terminology for scm. Formalized
Mathematics, 4(1):61–67, 1993.

[12] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized
Mathematics, 5(4):485–492, 1996.

[13] Czesław Byliński. A classical first order language. Formalized Mathematics, 1(4):669–676,
1990.

[14] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–
65, 1990.

[15] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,
1990.

[16] Czesław Byliński. The modification of a function by a function and the iteration of the
composition of a function. Formalized Mathematics, 1(3):521–527, 1990.

[17] Jing-Chao Chen. While macro instructions of SCMFSA. Formalized Mathematics,
6(4):553–561, 1997.

[18] Jing-Chao Chen and Yatsuka Nakamura. Bubble sort on SCMFSA. Formalized Mathe-
matics, 7(1):153–161, 1998.

[19] Jing-Chao Chen and Yatsuka Nakamura. Initialization halting concepts and their basic
properties of SCMFSA. Formalized Mathematics, 7(1):139–151, 1998.

[20] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,
1(1):35–40, 1990.

[21] Krzysztof Hryniewiecki. Recursive definitions. Formalized Mathematics, 1(2):321–328,
1990.

[22] Jarosław Kotowicz. Functions and finite sequences of real numbers. Formalized Mathe-
matics, 3(2):275–278, 1992.

[23] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized
Mathematics, 3(2):151–160, 1992.

[24] Andrzej Nędzusiak. σ-fields and probability. Formalized Mathematics, 1(2):401–407, 1990.
[25] Piotr Rudnicki and Andrzej Trybulec. Memory handling for SCMFSA. Formalized Ma-
thematics, 6(1):29–36, 1997.

insert sort on SCMFSA 127

[26] Yasushi Tanaka. On the decomposition of the states of SCM. Formalized Mathematics,
5(1):1–8, 1996.

[27] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25–34, 1990.
[28] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,
1990.

[29] Andrzej Trybulec and Agata Darmochwał. Boolean domains. Formalized Mathematics,
1(1):187–190, 1990.

[30] Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model
of computer. Formalized Mathematics, 4(1):51–56, 1993.

[31] Andrzej Trybulec and Yatsuka Nakamura. Modifying addresses of instructions of
SCMFSA. Formalized Mathematics, 5(4):571–576, 1996.

[32] Andrzej Trybulec and Yatsuka Nakamura. Relocability for SCMFSA. Formalized Mathe-
matics, 5(4):583–586, 1996.

[33] Andrzej Trybulec, Yatsuka Nakamura, and Noriko Asamoto. On the compositions of
macro instructions. Part I. Formalized Mathematics, 6(1):21–27, 1997.

[34] Andrzej Trybulec, Yatsuka Nakamura, and Piotr Rudnicki. The SCMFSA computer.
Formalized Mathematics, 5(4):519–528, 1996.

[35] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
[36] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821–827, 1990.
[37] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579,
1990.

[38] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[39] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Ma-
thematics, 1(1):17–23, 1990.

[40] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
1(1):73–83, 1990.

Received March 13, 1999

