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Summary. The concepts of Girard quantales (see [10] and [15])
and Blikle nets (see [5]) are introduced.

MML Identifier: QUANTAL1.

The notation and terminology used in this paper are introduced in the following
papers: [12], [11], [14], [7], [8], [6], [9], [16], [2], [3], [1], [13], and [4].
Let X be a set and let Y be a subset of 2%. Then |JY is a subset of X.
In this article we present several logical schemes. The scheme DenestFraenkel
concerns a non empty set A, a non empty set I3, a unary functor F yielding
arbitrary, a unary functor G yielding an element of B, and a unary predicate P,
and states that:
{F(a) : a ranges over elements of B, a € {G(b) : b ranges over
elements of A, P[b]}} = {F(G(a)) : a ranges over elements of A,
Pla]}

for all values of the parameters.

The scheme EmptyFraenkel deals with a non empty set A, a unary functor

F yielding arbitrary, and a unary predicate P, and states that:
{F(a) : a ranges over elements of A, Pla]} =0
provided the following requirement is met:
e It is not true that there exists an element a of A such that P|a].
We now state two propositions:

(1) Let Ly, Ly be non empty lattice structures. Suppose the lattice struc-
ture of L1 = the lattice structure of Ls. Let aj, by be elements of L1,
and let as, by be elements of Lo, and let X be a set. Suppose a1 = as
and by = by. Then a1 Uby = ag U by and a1 Mb; = ag Mby and a1 C by iff
as C b2.

(2) Let Ly, Ly be non empty lattice structures. Suppose the lattice struc-
ture of L1 = the lattice structure of Ls. Let a be an element of Lq, and
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let b be an element of Lo, and let X be a set. If a = b, then a C X iff
bC X and e J X iff b X.

Let L be a 1-sorted structure. A binary operation on L is a binary operation
on the carrier of L. A unary operation on L is a unary operation on the carrier
of L.

Let L be a non empty lattice structure and let X be a subset of L. We say
that X is directed if and only if:

(Def.1)  For every finite subset Y of X there exists an element x of L such that
LY Cxand z € X.

The following proposition is true

(3)  For every non empty lattice structure L and for every subset X of L
such that X is directed holds X is non empty.

We introduce quantale structures which are extensions of lattice structure
and half group structure and are systems
( a carrier, a join operation, a meet operation, a multiplication ),
where the carrier is a set and the join operation, the meet operation, and the
multiplication are binary operations on the carrier.
Let us mention that there exists a quantale structure which is non empty.
We consider quasinet structures as extensions of quantale structure and mul-
tiplicative loop structure as systems
( a carrier, a join operation, a meet operation, a multiplication, a unity ),
where the carrier is a set, the join operation, the meet operation, and the mul-
tiplication are binary operations on the carrier, and the unity is an element of
the carrier.
Let us note that there exists a quasinet structure which is non empty.
A non empty half group structure has left-zero if:
(Def.2)  There exists an element a of it such that for every element b of it holds
a-b=a.
A non empty half group structure has right-zero if:
(Def.3)  There exists an element b of it such that for every element a of it holds
a-b=hb.
A non empty half group structure has zero if:
(Def.4) Tt has left-zero and right-zero.

One can verify that every non empty half group structure which has zero has
also left-zero and right-zero and every non empty half group structure which
has left-zero and right-zero has also zero.

Let us note that there exists a non empty half group structure has zero.

A non empty quantale structure is right-distributive if:

(Def.5)  For every element a of it and for every set X holds a®| |, X = | J;,{a®b:
b ranges over elements of it, b € X}.

A non empty quantale structure is left-distributive if:

(Def.6)  For every element a of it and for every set X holds ||, X®a = | |,,{d®a :
b ranges over elements of it, b € X }.
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A non empty quantale structure is ®-additive if:

(Def.7)  For all elements a, b, ¢ of it holds (a Ub) ® ¢ = a ® cU b ® ¢ and
c®(alUb)=c®alc®b.

A non empty quantale structure is ®-continuous if it satisfies the condition
(Det.8).

(Def.8)  Let X1, X5 be subsets of it. Suppose X is directed and X5 is directed.
Then | | X7 ® || Xy = |l,{a ® b : a ranges over elements of it, b ranges
over elements of it, a € X1 A b€ Xy}

The following proposition is true

(4) Let @ be anon empty quantale structure. Suppose the lattice structure
of @ = the lattice of subsets of . Then @ is associative commutative
unital complete right-distributive left-distributive and lattice-like and has
Zero.

Let A be a non empty set and let by, by, b3 be binary operations on A. Note
that (A, by, be,b3) is non empty.
Let us observe that there exists a non empty quantale structure which is
associative commutative unital left-distributive right-distributive complete and
lattice-like and has zero.
The scheme LUBFraenkelDistr deals with a complete lattice-like non empty
quantale structure A, a binary functor F yielding an element of A, and sets B,
C, and states that:
L4{4{F(a,b) : b ranges over elements of A, b € C} : a ranges
over elements of A, a € B} = || 4{F(a,b) : a ranges over elements
of A, b ranges over elements of A, a € B A beC}

for all values of the parameters.

In the sequel @ denotes a left-distributive right-distributive complete lattice-
like non empty quantale structure and a, b, ¢ denote elements of Q).

Next we state two propositions:

(5)  For every Q and for all sets X, Y holds | Jo X @Y = g{a®b:a €
X Abev).

(6) (aUb)®c=a®@cUb®cand c® (aUb)=c®allc®b.

Let A be a non empty set, let by, by, b3 be binary operations on A, and let e
be an element of A. Observe that (A, by,be,bs,e) is non empty.

One can verify that there exists a non empty quasinet structure which is
complete and lattice-like.

Let us note that every complete lattice-like non empty quasinet structure
which is left-distributive and right-distributive is also ®-continuous and ®-
additive.

Let us observe that there exists a non empty quasinet structure which is
associative commutative well unital left-distributive right-distributive complete
and lattice-like and has zero and left-zero.

A quantale is an associative left-distributive right-distributive complete
lattice-like non empty quantale structure. A quasinet is a well unital associa-
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tive ®-continuous ®-additive complete lattice-like non empty quasinet structure
with left-zero.

A Blikle net is a non empty quasinet with zero.

The following proposition is true

(7)  For every well unital non empty quasinet structure @ such that @ is a
quantale holds () is a Blikle net.

We adopt the following rules: @) will be a quantale and a, b, ¢, d, D will be
elements of Q.
The following propositions are true:

(8) IfaCb thena®@cCb®cand c®al c®b.
(9) IfaCbandcC d, thena®cCb®d.
Let A be a non empty set. A unary operation on A is idempotent if:
(Def.9)  For every element a of A holds it(it(a)) = it(a).
Let L be a non empty lattice structure. A unary operation on L is inflationary
if:
(Def.10)  For every element p of L holds p C it(p).
A unary operation on L is deflationary if:
(Def.11)  For every element p of L holds it(p) C p.
A unary operation on L is monotone if:
(Def.12)  For all elements p, g of L such that p C ¢ holds it(p) C it(q).
A unary operation on L is | | -distributive if:

(Def.13)  For every subset X of L holds it(||X) C |];{it(a) : a ranges over
elements of L, a € X }.

We now state the proposition

(10)  Let L be a complete lattice and let j be a unary operation on L. Suppose
j is monotone. Then j is | | -distributive if and only if for every subset X
of L holds j(L|X) = [U;{j(a) : a ranges over elements of L, a € X}.

Let @ be a non empty quantale structure. A unary operation on @ is ®-
monotone if:

(Def.14)  For all elements a, b of @ holds it(a) ® it(b) C it(a @ b).

Let Q be a non empty quantale structure and let a, b be elements of (). The
functor a —, b yields an element of () and is defined by:

(Def.15) @ —, b=|]g{c: c ranges over elements of Q, c® a C b}.
The functor a —; b yields an element of () and is defined by:
(Def.16) @ —; b= |]p{c: c ranges over elements of ), a ® ¢ C b}.
One can prove the following propositions:

(11) a®bLCciff bC a —c.

(12) a®bCcif aCb—, c.

(13)  For every quantale ) and for all elements s, a, b of @ such that a = b

holds b -, sCa—, sand b —; s C a —y s.
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(14) Let @ be a quantale, and let s be an element of @), and let j be a unary
operation on Q. If for every element a of @ holds j(a) = (a —, s) — s,
then j is monotone.

Let @Q be a non empty quantale structure. An element of () is dualizing if:
(Def.17)  For every element a of @ holds (a —, it) —; it = a and (a —; it) —,
it = a.
An element of @ is cyclic if:
(Def.18)  For every element a of @ holds a —, it = a — it.
We now state several propositions:

(15) ¢ is cyclic iff for all a, b such that a @ b C ¢ holds b® a C c.

(16)  For every quantale @ and for all elements s, a of @ such that s is cyclic
holds a C (a —, s) —, s and a C (a —; 8) —y s.

(17)  For every quantale @ and for all elements s, a of @) such that s is cyclic
holdsa —, s = ((a —, 8) =, s) =, sand a —; s = ((a —; ) =1 8) — s.

(18)  For every quantale @) and for all elements s, a, b of @ such that s is
cyclic holds ((a —, ) =, ) ® (b =, 8) = s) C (a®b— 5) —4 s.

(19) If D is dualizing, then @ is unital and 1¢he mustiplication of @ = D — D
and 1ine multiplication of Q = D — D.

(20) If a is dualizing, then b —, c=b® (¢ = a) =, aand b —; ¢ = (¢ —,
a) @b — a.

We introduce Girard quantale structures which are extensions of quasinet
structure and are systems
( a carrier, a join operation, a meet operation, a multiplication, a unity,
absurd ),
where the carrier is a set, the join operation, the meet operation, and the mul-
tiplication are binary operations on the carrier, and the unity and the absurd
constitute elements of the carrier.
One can check that there exists a Girard quantale structure which is non
empty.
A non empty Girard quantale structure is cyclic if:
(Def.19)  The absurd of it is cyclic.
A non empty Girard quantale structure is dualized if:
(Def.20)  The absurd of it is dualizing.
The following proposition is true

(21) Let @ be a non empty Girard quantale structure. Suppose the lattice
structure of @ = the lattice of subsets of (). Then Q is cyclic and dualized.

Let A be a non empty set, let by, bs, b3 be binary operations on A, and let
e1, ez be elements of A. One can verify that (A, by, by, bs, €1, e2) is non empty.

Let us note that there exists a non empty Girard quantale structure which is
associative commutative well unital left-distributive right-distributive complete
lattice-like cyclic dualized and strict.



90 GRZEGORZ BANCEREK

A Girard quantale is an associative well unital left-distributive right-
distributive complete lattice-like cyclic dualized non empty Girard quantale
structure.

Let G be a Girard quantale structure. The functor 1 ¢ yielding an element
of G is defined as follows:

(Def.21) L = the absurd of G.

Let G be a non empty Girard quantale structure. The functor T g yielding
an element of G is defined by:

(Def.22) Tg=lg—r Lle.
Let a be an element of G. The functor L, yielding an element of G is defined
by:
(Def.23) 1l,=a—, Llg.
Let G be a non empty Girard quantale structure. The functor Negation(G)
yields a unary operation on G and is defined as follows:
(Def.24)  For every element a of G holds (Negation(G))(a) = L,.

Let G be a non empty Girard quantale structure and let u be a unary oper-
ation on G. The functor 1, yielding a unary operation on G is defined by:

(Def.25) 1, = Negation(G) - u.
Let G be a non empty Girard quantale structure and let o be a binary

operation on (G. The functor 1, yields a binary operation on G and is defined
as follows:

(Def.26) L, = Negation(G) - o.
We adopt the following convention: () denotes a Girard quantale, a, a1, as,
b, b1, ba, ¢ denote elements of (), and X denotes a set.

We now state several propositions:
J_J_ = a.

a

(22)
(23) IfaC b, then 1, C L,.
(24) J_UQX =[lo{ls:a e X}
(25) J-HQX:UQ{J-aiﬂéX}-
(26) Law=1LaMlyand L,y = Lo ULy
Let us consider @, a, b. The functor a p b yields an element of ) and is
defined as follows:
(Def27) apb=_1,,51,-
We now state several propositions:
27) a@pgX =lgla®@b:be X} andap[|pX =[lglapc:ce X}
2 o X®a=g{b®a:be X} and [|gX pa=[lp{cpa:ce X}
apbfNe=(apb)M(apc)and bMNcpa=(bpa)(cpa).

Qo

N N SN /N /S /S
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If a1 € by and ag C by, then a1 p as T by p bo.

(apb)pc=ap(bpc).
a® Tg=aand Tg®a=a.

w W
N =
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(34)
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aplg=aand Lgpa=a.
Let Q be a quantale and let j be a unary operation on (). Suppose j is
monotone idempotent and | | -distributive. Then there exists a complete

lattice L such that the carrier of L = rngj and for every subset X of L
holds || X = j(Llg X).
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