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Summary. The concepts of Girard quantales (see [10] and [15])
and Blikle nets (see [5]) are introduced.
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The notation and terminology used in this paper are introduced in the following
papers: [12], [11], [14], [7], [8], [6], [9], [16], [2], [3], [1], [13], and [4].

Let X be a set and let Y be a subset of 2X . Then
⋃

Y is a subset of X.
In this article we present several logical schemes. The scheme DenestFraenkel

concerns a non empty set A, a non empty set B, a unary functor F yielding
arbitrary, a unary functor G yielding an element of B, and a unary predicate P,
and states that:

{F(a) : a ranges over elements of B, a ∈ {G(b) : b ranges over
elements of A, P[b]}} = {F(G(a)) : a ranges over elements of A,
P[a]}

for all values of the parameters.
The scheme EmptyFraenkel deals with a non empty set A, a unary functor

F yielding arbitrary, and a unary predicate P, and states that:
{F(a) : a ranges over elements of A, P[a]} = ∅

provided the following requirement is met:
• It is not true that there exists an element a of A such that P[a].
We now state two propositions:

(1) Let L1, L2 be non empty lattice structures. Suppose the lattice struc-
ture of L1 = the lattice structure of L2. Let a1, b1 be elements of L1,
and let a2, b2 be elements of L2, and let X be a set. Suppose a1 = a2

and b1 = b2. Then a1 ⊔ b1 = a2 ⊔ b2 and a1 ⊓ b1 = a2 ⊓ b2 and a1 ⊑ b1 iff
a2 ⊑ b2.

(2) Let L1, L2 be non empty lattice structures. Suppose the lattice struc-
ture of L1 = the lattice structure of L2. Let a be an element of L1, and
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let b be an element of L2, and let X be a set. If a = b, then a ⊑ X iff
b ⊑ X and a ⊒ X iff b ⊒ X.

Let L be a 1-sorted structure. A binary operation on L is a binary operation
on the carrier of L. A unary operation on L is a unary operation on the carrier
of L.

Let L be a non empty lattice structure and let X be a subset of L. We say
that X is directed if and only if:

(Def.1) For every finite subset Y of X there exists an element x of L such that
⊔

L Y ⊑ x and x ∈ X.

The following proposition is true

(3) For every non empty lattice structure L and for every subset X of L

such that X is directed holds X is non empty.

We introduce quantale structures which are extensions of lattice structure
and half group structure and are systems

〈 a carrier, a join operation, a meet operation, a multiplication 〉,
where the carrier is a set and the join operation, the meet operation, and the
multiplication are binary operations on the carrier.

Let us mention that there exists a quantale structure which is non empty.
We consider quasinet structures as extensions of quantale structure and mul-

tiplicative loop structure as systems
〈 a carrier, a join operation, a meet operation, a multiplication, a unity 〉,

where the carrier is a set, the join operation, the meet operation, and the mul-
tiplication are binary operations on the carrier, and the unity is an element of
the carrier.

Let us note that there exists a quasinet structure which is non empty.
A non empty half group structure has left-zero if:

(Def.2) There exists an element a of it such that for every element b of it holds
a · b = a.

A non empty half group structure has right-zero if:

(Def.3) There exists an element b of it such that for every element a of it holds
a · b = b.

A non empty half group structure has zero if:

(Def.4) It has left-zero and right-zero.

One can verify that every non empty half group structure which has zero has
also left-zero and right-zero and every non empty half group structure which
has left-zero and right-zero has also zero.

Let us note that there exists a non empty half group structure has zero.
A non empty quantale structure is right-distributive if:

(Def.5) For every element a of it and for every set X holds a⊗
⊔

it X =
⊔

it{a⊗b :
b ranges over elements of it, b ∈ X}.

A non empty quantale structure is left-distributive if:

(Def.6) For every element a of it and for every set X holds
⊔

it X⊗a =
⊔

it{b⊗a :
b ranges over elements of it, b ∈ X}.
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A non empty quantale structure is ⊗-additive if:

(Def.7) For all elements a, b, c of it holds (a ⊔ b) ⊗ c = a ⊗ c ⊔ b ⊗ c and
c ⊗ (a ⊔ b) = c ⊗ a ⊔ c ⊗ b.

A non empty quantale structure is ⊗-continuous if it satisfies the condition
(Def.8).

(Def.8) Let X1, X2 be subsets of it. Suppose X1 is directed and X2 is directed.
Then

⊔
X1 ⊗

⊔
X2 =

⊔
it{a ⊗ b : a ranges over elements of it, b ranges

over elements of it, a ∈ X1 ∧ b ∈ X2}.

The following proposition is true

(4) Let Q be a non empty quantale structure. Suppose the lattice structure
of Q = the lattice of subsets of ∅. Then Q is associative commutative
unital complete right-distributive left-distributive and lattice-like and has
zero.

Let A be a non empty set and let b1, b2, b3 be binary operations on A. Note
that 〈A, b1, b2, b3〉 is non empty.

Let us observe that there exists a non empty quantale structure which is
associative commutative unital left-distributive right-distributive complete and
lattice-like and has zero.

The scheme LUBFraenkelDistr deals with a complete lattice-like non empty
quantale structure A, a binary functor F yielding an element of A, and sets B,
C, and states that:

⊔
A{

⊔
A{F(a, b) : b ranges over elements of A, b ∈ C} : a ranges

over elements of A, a ∈ B} =
⊔

A{F(a, b) : a ranges over elements
of A, b ranges over elements of A, a ∈ B ∧ b ∈ C}

for all values of the parameters.
In the sequel Q denotes a left-distributive right-distributive complete lattice-

like non empty quantale structure and a, b, c denote elements of Q.
Next we state two propositions:

(5) For every Q and for all sets X, Y holds
⊔

Q X ⊗
⊔

Q Y =
⊔

Q{a⊗ b : a ∈
X ∧ b ∈ Y }.

(6) (a ⊔ b) ⊗ c = a ⊗ c ⊔ b ⊗ c and c ⊗ (a ⊔ b) = c ⊗ a ⊔ c ⊗ b.

Let A be a non empty set, let b1, b2, b3 be binary operations on A, and let e

be an element of A. Observe that 〈A, b1, b2, b3, e〉 is non empty.
One can verify that there exists a non empty quasinet structure which is

complete and lattice-like.
Let us note that every complete lattice-like non empty quasinet structure

which is left-distributive and right-distributive is also ⊗-continuous and ⊗-
additive.

Let us observe that there exists a non empty quasinet structure which is
associative commutative well unital left-distributive right-distributive complete
and lattice-like and has zero and left-zero.

A quantale is an associative left-distributive right-distributive complete
lattice-like non empty quantale structure. A quasinet is a well unital associa-
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tive ⊗-continuous ⊗-additive complete lattice-like non empty quasinet structure
with left-zero.

A Blikle net is a non empty quasinet with zero.
The following proposition is true

(7) For every well unital non empty quasinet structure Q such that Q is a
quantale holds Q is a Blikle net.

We adopt the following rules: Q will be a quantale and a, b, c, d, D will be
elements of Q.

The following propositions are true:

(8) If a ⊑ b, then a ⊗ c ⊑ b ⊗ c and c ⊗ a ⊑ c ⊗ b.

(9) If a ⊑ b and c ⊑ d, then a ⊗ c ⊑ b ⊗ d.

Let A be a non empty set. A unary operation on A is idempotent if:

(Def.9) For every element a of A holds it(it(a)) = it(a).

Let L be a non empty lattice structure. A unary operation on L is inflationary
if:

(Def.10) For every element p of L holds p ⊑ it(p).

A unary operation on L is deflationary if:

(Def.11) For every element p of L holds it(p) ⊑ p.

A unary operation on L is monotone if:

(Def.12) For all elements p, q of L such that p ⊑ q holds it(p) ⊑ it(q).

A unary operation on L is
⊔

-distributive if:

(Def.13) For every subset X of L holds it(
⊔

X) ⊑
⊔

L{it(a) : a ranges over
elements of L, a ∈ X}.

We now state the proposition

(10) Let L be a complete lattice and let j be a unary operation on L. Suppose
j is monotone. Then j is

⊔
-distributive if and only if for every subset X

of L holds j(
⊔

X) =
⊔

L{j(a) : a ranges over elements of L, a ∈ X}.

Let Q be a non empty quantale structure. A unary operation on Q is ⊗-
monotone if:

(Def.14) For all elements a, b of Q holds it(a) ⊗ it(b) ⊑ it(a ⊗ b).

Let Q be a non empty quantale structure and let a, b be elements of Q. The
functor a →r b yields an element of Q and is defined by:

(Def.15) a →r b =
⊔

Q{c : c ranges over elements of Q, c ⊗ a ⊑ b}.

The functor a →l b yields an element of Q and is defined by:

(Def.16) a →l b =
⊔

Q{c : c ranges over elements of Q, a ⊗ c ⊑ b}.

One can prove the following propositions:

(11) a ⊗ b ⊑ c iff b ⊑ a →l c.

(12) a ⊗ b ⊑ c iff a ⊑ b →r c.

(13) For every quantale Q and for all elements s, a, b of Q such that a ⊑ b

holds b →r s ⊑ a →r s and b →l s ⊑ a →l s.
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(14) Let Q be a quantale, and let s be an element of Q, and let j be a unary
operation on Q. If for every element a of Q holds j(a) = (a →r s) →r s,

then j is monotone.

Let Q be a non empty quantale structure. An element of Q is dualizing if:

(Def.17) For every element a of Q holds (a →r it) →l it = a and (a →l it) →r

it = a.

An element of Q is cyclic if:

(Def.18) For every element a of Q holds a →r it = a →l it.

We now state several propositions:

(15) c is cyclic iff for all a, b such that a ⊗ b ⊑ c holds b ⊗ a ⊑ c.

(16) For every quantale Q and for all elements s, a of Q such that s is cyclic
holds a ⊑ (a →r s) →r s and a ⊑ (a →l s) →l s.

(17) For every quantale Q and for all elements s, a of Q such that s is cyclic
holds a →r s = ((a →r s) →r s) →r s and a →l s = ((a →l s) →l s) →l s.

(18) For every quantale Q and for all elements s, a, b of Q such that s is
cyclic holds ((a →r s) →r s) ⊗ ((b →r s) →r s) ⊑ (a ⊗ b →r s) →r s.

(19) If D is dualizing, then Q is unital and 1the multiplication of Q = D →r D

and 1the multiplication of Q = D →l D.

(20) If a is dualizing, then b →r c = b ⊗ (c →l a) →r a and b →l c = (c →r

a) ⊗ b →l a.

We introduce Girard quantale structures which are extensions of quasinet
structure and are systems

〈 a carrier, a join operation, a meet operation, a multiplication, a unity,
absurd 〉,
where the carrier is a set, the join operation, the meet operation, and the mul-
tiplication are binary operations on the carrier, and the unity and the absurd
constitute elements of the carrier.

One can check that there exists a Girard quantale structure which is non
empty.

A non empty Girard quantale structure is cyclic if:

(Def.19) The absurd of it is cyclic.

A non empty Girard quantale structure is dualized if:

(Def.20) The absurd of it is dualizing.

The following proposition is true

(21) Let Q be a non empty Girard quantale structure. Suppose the lattice
structure of Q = the lattice of subsets of ∅. Then Q is cyclic and dualized.

Let A be a non empty set, let b1, b2, b3 be binary operations on A, and let
e1, e2 be elements of A. One can verify that 〈A, b1, b2, b3, e1, e2〉 is non empty.

Let us note that there exists a non empty Girard quantale structure which is
associative commutative well unital left-distributive right-distributive complete
lattice-like cyclic dualized and strict.
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A Girard quantale is an associative well unital left-distributive right-
distributive complete lattice-like cyclic dualized non empty Girard quantale
structure.

Let G be a Girard quantale structure. The functor ⊥G yielding an element
of G is defined as follows:

(Def.21) ⊥G = the absurd of G.

Let G be a non empty Girard quantale structure. The functor ⊤G yielding
an element of G is defined by:

(Def.22) ⊤G = ⊥G →r ⊥G.

Let a be an element of G. The functor ⊥a yielding an element of G is defined
by:

(Def.23) ⊥a = a →r ⊥G.

Let G be a non empty Girard quantale structure. The functor Negation(G)
yields a unary operation on G and is defined as follows:

(Def.24) For every element a of G holds (Negation(G))(a) = ⊥a.

Let G be a non empty Girard quantale structure and let u be a unary oper-
ation on G. The functor ⊥u yielding a unary operation on G is defined by:

(Def.25) ⊥u = Negation(G) · u.

Let G be a non empty Girard quantale structure and let o be a binary
operation on G. The functor ⊥o yields a binary operation on G and is defined
as follows:

(Def.26) ⊥o = Negation(G) · o.

We adopt the following convention: Q denotes a Girard quantale, a, a1, a2,
b, b1, b2, c denote elements of Q, and X denotes a set.

We now state several propositions:

(22) ⊥⊥a
= a.

(23) If a ⊑ b, then ⊥b ⊑ ⊥a.

(24) ⊥⊔
Q

X = ⌈−⌉Q{⊥a : a ∈ X}.

(25) ⊥⌈−⌉QX
=

⊔
Q{⊥a : a ∈ X}.

(26) ⊥a⊔b = ⊥a ⊓ ⊥b and ⊥a⊓b = ⊥a ⊔ ⊥b.

Let us consider Q, a, b. The functor a ℘ b yields an element of Q and is
defined as follows:

(Def.27) a ℘ b = ⊥⊥a⊗⊥b
.

We now state several propositions:

(27) a ⊗
⊔

Q X =
⊔

Q{a ⊗ b : b ∈ X} and a ℘ ⌈−⌉QX = ⌈−⌉Q{a ℘ c : c ∈ X}.

(28)
⊔

Q X ⊗ a =
⊔

Q{b ⊗ a : b ∈ X} and ⌈−⌉QX ℘ a = ⌈−⌉Q{c ℘ a : c ∈ X}.

(29) a ℘ b ⊓ c = (a ℘ b) ⊓ (a ℘ c) and b ⊓ c ℘ a = (b ℘ a) ⊓ (c ℘ a).

(30) If a1 ⊑ b1 and a2 ⊑ b2, then a1 ℘ a2 ⊑ b1 ℘ b2.

(31) (a ℘ b) ℘ c = a ℘ (b ℘ c).

(32) a ⊗⊤Q = a and ⊤Q ⊗ a = a.
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(33) a ℘ ⊥Q = a and ⊥Q ℘ a = a.

(34) Let Q be a quantale and let j be a unary operation on Q. Suppose j is
monotone idempotent and

⊔
-distributive. Then there exists a complete

lattice L such that the carrier of L = rng j and for every subset X of L

holds
⊔

X = j(
⊔

Q X).

References

[1] Grzegorz Bancerek. Complete lattices. Formalized Mathematics, 2(5):719–725, 1991.
[2] Grzegorz Bancerek. Filters - part I. Formalized Mathematics, 1(5):813–819, 1990.
[3] Grzegorz Bancerek. Filters - part II. Quotient lattices modulo filters and direct product

of two lattices. Formalized Mathematics, 2(3):433–438, 1991.
[4] Grzegorz Bancerek. Monoids. Formalized Mathematics, 3(2):213–225, 1992.
[5] A. Blikle. An analysis of programs by algebraic means. Banach Center Publications,

2:167–213.
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