Representation Theorem for Boolean Algebras

Jarosław Stanisław Walijewski
Warsaw University
Białystok

MML Identifier: LOPCLSET.

The notation and terminology used in this paper are introduced in the following articles: [9], [7], [4], [5], [3], [10], [11], [8], [12], [1], [2], and [6].

In the sequel T is a topological space, X, Y are subsets of T, and x is arbitrary.

Let T be a topological space. The functor $\text{OpenClosedSet}(T)$ yielding a non empty family of subsets of the carrier of T is defined as follows:

(Def.1) $\text{OpenClosedSet}(T) = \{x : x \text{ ranges over subsets of } T, x \text{ is open } \land x \text{ is closed}\}$.

The following propositions are true:

(1) If $x \in \text{OpenClosedSet}(T)$, then there exists X such that $X = x$.

(2) If $X \in \text{OpenClosedSet}(T)$, then X is open.

(3) If $X \in \text{OpenClosedSet}(T)$, then X is closed.

(4) If X is open and closed, then $X \in \text{OpenClosedSet}(T)$.

Let X be a non empty set and let t be a non empty family of subsets of X. We see that the element of t is a subset of X.

In the sequel x, y, z will denote elements of $\text{OpenClosedSet}(T)$.

Let us consider T and let C, D be elements of $\text{OpenClosedSet}(T)$. Then $C \cup D$ is an element of $\text{OpenClosedSet}(T)$.

Let us consider T and let C, D be elements of $\text{OpenClosedSet}(T)$. Then $C \cap D$ is an element of $\text{OpenClosedSet}(T)$.

Let us consider T. The functor $\text{join}(T)$ yielding a binary operation on $\text{OpenClosedSet}(T)$ is defined by:

(Def.2) For all elements A, B of $\text{OpenClosedSet}(T)$ holds $(\text{join}(T))(A, B) = A \cup B$.

© 1993 Fondation Philippe le Hodey
ISSN 0777-4028
Let us consider T. The functor meet(T) yields a binary operation on OpenClosedSet(T) and is defined by:

(Def.3) For all elements A, B of OpenClosedSet(T) holds $(\text{meet}(T))(A, B) = A \cap B$.

We now state several propositions:

(5) Let x, y be elements of the carrier of $\langle \text{OpenClosedSet}(T), \text{join}(T), \text{meet}(T) \rangle$ and let x', y' be elements of OpenClosedSet(T). If $x = x'$ and $y = y'$, then $x \cup y = x' \cup y'$.

(6) Let x, y be elements of the carrier of $\langle \text{OpenClosedSet}(T), \text{join}(T), \text{meet}(T) \rangle$ and let x', y' be elements of OpenClosedSet(T). If $x = x'$ and $y = y'$, then $x \cap y = x' \cap y'$.

(7) \emptyset_T is an element of OpenClosedSet(T).

(8) Ω_T is an element of OpenClosedSet(T).

(9) For every element x of OpenClosedSet(T) holds x^c is an element of OpenClosedSet(T).

(10) $\langle \text{OpenClosedSet}(T), \text{join}(T), \text{meet}(T) \rangle$ is a lattice.

Let T be a topological space. The functor OpenClosedSetLatt(T) yields a lattice and is defined by:

(Def.4) OpenClosedSetLatt(T) = $\langle \text{OpenClosedSet}(T), \text{join}(T), \text{meet}(T) \rangle$.

Next we state two propositions:

(11) For every topological space T and for all elements x, y of the carrier of OpenClosedSetLatt(T) holds $x \cup y = x \cup y$.

(12) For every topological space T and for all elements x, y of the carrier of OpenClosedSetLatt(T) holds $x \cap y = x \cap y$.

We follow a convention: a, b, c denote elements of the carrier of $\langle \text{OpenClosedSet}(T), \text{join}(T), \text{meet}(T) \rangle$ and x, y, z denote elements of OpenClosedSet(T).

The following propositions are true:

(13) The carrier of OpenClosedSetLatt(T) = OpenClosedSet(T).

(14) OpenClosedSetLatt(T) is Boolean.

(15) Ω_T is an element of the carrier of OpenClosedSetLatt(T).

(16) \emptyset_T is an element of the carrier of OpenClosedSetLatt(T).

One can check that there exists a Boolean lattice which is non trivial.

For simplicity we adopt the following convention: L_1, L_2 denote lattices, a, p, q' denote elements of the carrier of B_1, U_1 denotes a filter of B_1, B denotes a subset of the carrier of B_1, and D denotes a non empty subset of the carrier of B_1.

Let us consider B_1. The functor ultraset(B_1) yields a non empty subset of the carrier of B_1 and is defined by:

(Def.5) ultraset(B_1) = $\{ F : F$ is ultrafilter $\}$.

Next we state two propositions:
(18) \(x \in \text{ultraset}(B_1) \) iff there exists \(U_1 \) such that \(U_1 = x \) and \(U_1 \) is ultrafilter.

(19) For every \(a \) holds \(\{ F : F \text{ is ultrafilter} \land a \in F \} \subseteq \text{ultraset}(B_1) \).

Let us consider \(B_1 \). The functor \(\text{UFilter}(B_1) \) yielding a function is defined as follows:

(Def.6) \(\text{dom } \text{UFilter}(B_1) = \) the carrier of \(B_1 \) and for every element \(a \) of the carrier of \(B_1 \) holds \((\text{UFilter}(B_1))(a) = \{ U_1 : U_1 \text{ is ultrafilter} \land a \in U_1 \} \).

Next we state several propositions:

(20) \(x \in (\text{UFilter}(B_1))(a) \) iff there exists \(F \) such that \(F = x \) and \(F \) is ultrafilter and \(a \in F \).

(21) \(F \in (\text{UFilter}(B_1))(a) \) iff \(F \) is ultrafilter and \(a \in F \).

(22) For every \(F \) such that \(F \) is ultrafilter holds \(a \cup b \in F \) iff \(a \in F \) or \(b \in F \).

(23) \((\text{UFilter}(B_1))(a \cap b) = (\text{UFilter}(B_1))(a) \cap (\text{UFilter}(B_1))(b) \).

(24) \((\text{UFilter}(B_1))(a \cup b) = (\text{UFilter}(B_1))(a) \cup (\text{UFilter}(B_1))(b) \).

Let us consider \(B_1 \). Then \(\text{UFilter}(B_1) \) is a function from the carrier of \(B_1 \) into \(2^{\text{ultraset}(B_1)} \).

Let us consider \(B_1 \). The functor \(\text{StoneR}(B_1) \) yielding a non empty set is defined as follows:

(Def.7) \(\text{StoneR}(B_1) = \text{rng } \text{UFilter}(B_1) \).

The following propositions are true:

(25) \(\text{StoneR}(B_1) \subseteq 2^{\text{ultraset}(B_1)} \).

(26) \(x \in \text{StoneR}(B_1) \) iff there exists \(a \) such that \((\text{UFilter}(B_1))(a) = x \).

Let us consider \(B_1 \). The functor \(\text{StoneSpace}(B_1) \) yielding a strict topological space is defined by:

(Def.8) The carrier of \(\text{StoneSpace}(B_1) = \) ultraset\((B_1)\) and the topology of \(\text{StoneSpace}(B_1) = \{ \bigcup A : A \text{ ranges over subsets of } 2^{\text{ultraset}(B_1)}, A \subseteq \text{StoneR}(B_1) \} \).

One can prove the following two propositions:

(27) If \(F \) is ultrafilter and \(F \not\in (\text{UFilter}(B_1))(a) \), then \(a \not\in F \).

(28) \(\text{ultraset}(B_1) \setminus (\text{UFilter}(B_1))(a) = (\text{UFilter}(B_1))(a^c) \).

Let us consider \(B_1 \). The functor \(\text{StoneBLattice}(B_1) \) yields a lattice and is defined as follows:

(Def.9) \(\text{StoneBLattice}(B_1) = \text{OpenClosedSetLatt}(\text{StoneSpace}(B_1)) \).

One can prove the following four propositions:

(29) \(\text{UFilter}(B_1) \) is one-to-one.

(30) \(\bigcup \text{StoneR}(B_1) = \text{ultraset}(B_1) \).

(31) For all sets \(A, B, X \) such that \(X \subseteq \bigcup (A \cup B) \) and for arbitrary \(Y \) such that \(Y \in B \) holds \(Y \cap X = \emptyset \) holds \(X \subseteq \bigcup A \).

(32) For every non empty set \(X \) holds there exists finite subset of \(X \) which is non empty.

1The proposition (17) has been removed.
Let D be a non empty set. Note that there exists a finite subset of D which is non empty.

The following propositions are true:

(33) For every lattice L and for all elements a, b, c, d of the carrier of L such that $a \subseteq c$ and $b \subseteq d$ holds $a \cap b \subseteq c \cap d$.

(34) Let L be a non trivial Boolean lattice and let D be a non empty subset of the carrier of L. Suppose $\bot_L \in [D]$. Then there exists a non empty finite subset B of the carrier of L such that $B \subseteq D$ and $\bigcap_{B} = \bot_L$.

(35) For every lower bound lattice L it is not true that there exists a filter F of L such that F is ultrafilter and $\bot_L \in F$.

(36) $(\mathit{UF} \mathit{Filter}(B_1))(\bot(B_1)) = \emptyset$.

(37) $(\mathit{UF} \mathit{Filter}(B_1))(\top(B_1)) = \mathit{ultraset}(B_1)$.

(38) If ultraset$(B_1) = \bigcup X$ and X is a subset of StoneR(B_1), then there exists a finite subset Y of X such that ultraset$(B_1) = \bigcup Y$.

(39) If $x \in 2^X$ and $y \in 2^X$, then $x \cap y \in 2^X$.

(40) StoneR$(B_1) = \mathit{OpenClosedSet}(\mathit{StoneSpace}(B_1))$.

Let us consider B_1. Then $\mathit{UF} \mathit{Filter}(B_1)$ is a homomorphism from B_1 to StoneBLattice(B_1).

Next we state four propositions:

(41) $\mathit{rng} \mathit{UF} \mathit{Filter}(B_1)$ = the carrier of StoneBLattice(B_1).

(42) $\mathit{UF} \mathit{Filter}(B_1)$ is isomorphism.

(43) B_1 and StoneBLattice(B_1) are isomorphic.

(44) For every non trivial Boolean lattice B_1 there exists a topological space T such that B_1 and OpenClosedSetLatt(T) are isomorphic.

REFERENCES

Received July 14, 1993