Hahn-Banach Theorem

Bogdan Nowak
Lódź University
Andrzej Trybulec
Warsaw University
Białystok

Summary. We prove a version of Hahn-Banach Theorem.

MML Identifier: HAHNBAN.

The notation and terminology used here are introduced in the following papers: [13], [5], [9], [2], [3], [17], [16], [15], [8], [4], [10], [6], [14], [12], [11], [1], and [7].

1. Preliminaries

The following propositions are true:
(1) For arbitrary \(x, y \) and for every function \(f \) such that \((x, y) \in f \) holds \(y \in \text{rng } f \).
(2) For every set \(X \) and for all functions \(f, g \) such that \(X \subseteq \text{dom } f \) and \(f \subseteq g \) holds \(f \upharpoonright X = g \upharpoonright X \).
(3) For every non empty set \(A \) and for arbitrary \(b \) such that \(A \neq \{b\} \) there exists an element \(a \) of \(A \) such that \(a \neq b \).

Let \(B \) be a non empty functional set. Observe that every element of \(B \) is function-like.

The following propositions are true:
(4) For all sets \(X, Y \) holds every non empty subset of \(X \rightarrow Y \) is a non empty functional set.
(5) Let \(B \) be a non empty functional set and let \(f \) be a function. Suppose \(f = \bigcup B \). Then \(\text{dom } f = \bigcup \{ \text{dom } g : g \text{ ranges over elements of } B \} \) and \(\text{rng } f = \bigcup \{ \text{rng } g : g \text{ ranges over elements of } B \} \).

The scheme \(\text{NonUniqExD} \) deals with a non empty set \(A \), a non empty set \(B \), and a binary predicate \(\mathcal{P} \), and states that:
There exists a function f from \mathcal{A} into \mathcal{B} such that for every element e of \mathcal{A} holds $\mathcal{P}[e, f(e)]$

provided the parameters satisfy the following condition:

- For every element e of \mathcal{A} there exists an element u of \mathcal{B} such that $\mathcal{P}[e, u]$.

One can prove the following propositions:

(6) For every non empty subset A of \mathbb{R} such that for every Real number r such that $r \in A$ holds $r \leq -\infty$ holds $A = \{-\infty\}$.

(7) For every non empty subset A of \mathbb{R} such that for every Real number r such that $r \in A$ holds $+\infty \leq r$ holds $A = \{+\infty\}$.

(8) Let A be a non empty subset of \mathbb{R} and let r be a Real number. If $r < \sup A$, then there exists a Real number s such that $s \in A$ and $r < s$.

(9) Let A be a non empty subset of \mathbb{R} and let r be a Real number. If $\inf A < r$, then there exists a Real number s such that $s \in A$ and $s < r$.

(10) Let A, B be non empty subset of \mathbb{R}. Suppose that for all Real numbers r, s such that $r \in A$ and $s \in B$ holds $r \leq s$. Then $\sup A \leq \inf B$.

(12) Let x, y be real numbers and let x', y' be Real numbers. If $x = x'$ and $y = y'$, then $x \leq y$ iff $x' \leq y'$.

2. Sets Linearly Ordered by the Inclusion

A set is \subseteq-linear if:

(Def.1) For arbitrary x, y such that $x \in \textit{it}$ and $y \in \textit{it}$ holds $x \subseteq y$ or $y \subseteq x$.

Let A be a non empty set. Note that there exists a subset of A which is \subseteq-linear and non empty.

We now state the proposition

(13) For all sets X, Y and for every \subseteq-linear non empty subset B of $X \rightarrow Y$ holds $\bigcup B \in X \rightarrow Y$.

3. Subspaces of a Real Linear Space

In the sequel V will be a real linear space.

One can prove the following propositions:

(14) For all subspaces W_1, W_2 of V holds the carrier of $W_1 \subseteq$ the carrier of $W_1 + W_2$.

(15) Let W_1, W_2 be subspaces of V. Suppose V is the direct sum of W_1 and W_2. Let v, v_1, v_2 be vectors of V. If $v_1 \in W_1$ and $v_2 \in W_2$ and $v = v_1 + v_2$, then $v < (W_1, W_2) = \langle v_1, v_2 \rangle$.

1The proposition (11) has been removed.
(16) Let \(W_1, W_2 \) be subspaces of \(V \). Suppose \(V \) is the direct sum of \(W_1 \) and \(W_2 \). Let \(v, v_1, v_2 \) be vectors of \(V \). If \(v \triangleleft (W_1, W_2) = \{v_1, v_2\} \), then \(v = v_1 + v_2 \).

(17) Let \(W_1, W_2 \) be subspaces of \(V \). Suppose \(V \) is the direct sum of \(W_1 \) and \(W_2 \). Let \(v, v_1, v_2 \) be vectors of \(V \). If \(v \triangleleft (W_1, W_2) = \{v_1, v_2\} \), then \(v_1 \in W_1 \) and \(v_2 \in W_2 \).

(18) Let \(W_1, W_2 \) be subspaces of \(V \). Suppose \(V \) is the direct sum of \(W_1 \) and \(W_2 \). Let \(v, v_1, v_2 \) be vectors of \(V \). If \(v \triangleleft (W_1, W_2) = \{v_1, v_2\} \), then \(v \triangleleft (W_2, W_1) = \{v_2, v_1\} \).

(19) Let \(W_1, W_2 \) be subspaces of \(V \). Suppose \(V \) is the direct sum of \(W_1 \) and \(W_2 \). Let \(v \) be a vector of \(V \). If \(v \in W_1 \), then \(v \triangleleft (W_1, W_2) = \{v, 0v\} \).

(20) Let \(W_1, W_2 \) be subspaces of \(V \). Suppose \(V \) is the direct sum of \(W_1 \) and \(W_2 \). Let \(v \) be a vector of \(V \). If \(v \in W_2 \), then \(v \triangleleft (W_1, W_2) = \{0v, v\} \).

(21) Let \(V \) be a subspace of \(V \), and let \(W_1 \) be a subspace of \(V \), and let \(v \) be a vector of \(V \). If \(v \in W_1 \), then \(v \) is a vector of \(V \).

(22) For all subspaces \(V_1, V_2, W \) of \(V \) and for all subspaces \(W_1, W_2 \) of \(W \) such that \(W_1 = V_1 \) and \(W_2 = V_2 \) holds \(W_1 + W_2 = V_1 + V_2 \).

(23) For every subspace \(W \) of \(V \) and for every vector \(v \) of \(W \) and for every vector \(w \) of \(W \) such that \(v = w \) holds \(\text{Lin}\{\{w\}\} = \text{Lin}\{\{v\}\} \).

(24) Let \(v \) be a vector of \(V \) and let \(X \) be a subspace of \(V \). Suppose \(v \notin X \). Let \(y \) be a vector of \(X + \text{Lin}\{\{v\}\} \) and let \(w \) be a subspace of \(X + \text{Lin}\{\{v\}\} \). If \(v = y \) and \(W = X \), then \(X + \text{Lin}\{\{v\}\} \) is the direct sum of \(W \) and \(\text{Lin}\{\{y\}\} \).

(25) Let \(v \) be a vector of \(V \), and let \(X \) be a subspace of \(V \), and let \(y \) be a vector of \(X + \text{Lin}\{\{v\}\} \), and let \(W \) be a subspace of \(X + \text{Lin}\{\{v\}\} \). If \(v = y \) and \(X = W \) and \(v \notin X \), then \(y \triangleleft (W, \text{Lin}\{\{y\}\}) = \{0w, y\} \).

(26) Let \(v \) be a vector of \(V \), and let \(X \) be a subspace of \(V \), and let \(y \) be a vector of \(X + \text{Lin}\{\{v\}\} \), and let \(W \) be a subspace of \(X + \text{Lin}\{\{v\}\} \). Suppose \(v = y \) and \(X = W \) and \(v \notin X \). Let \(w \) be a vector of \(X + \text{Lin}\{\{v\}\} \). If \(w \in X \), then \(w \triangleleft (W, \text{Lin}\{\{y\}\}) = \{w, 0v\} \).

(27) For every vector \(v \) of \(V \) and for all subspaces \(W_1, W_2 \) of \(V \) there exist vectors \(v_1, v_2 \) of \(V \) such that \(v \triangleleft (W_1, W_2) = \{v_1, v_2\} \).

(28) Let \(v \) be a vector of \(V \), and let \(X \) be a subspace of \(V \), and let \(y \) be a vector of \(X + \text{Lin}\{\{v\}\} \), and let \(W \) be a subspace of \(X + \text{Lin}\{\{v\}\} \). Suppose \(v = y \) and \(X = W \) and \(v \notin X \). Let \(w \) be a vector of \(X + \text{Lin}\{\{v\}\} \). Then there exists a vector \(z \) of \(X \) and there exists a real number \(r \) such that \(w \triangleleft (W, \text{Lin}\{\{y\}\}) = \{z, r \cdot v\} \).

(29) Let \(v \) be a vector of \(V \), and let \(X \) be a subspace of \(V \), and let \(y \) be a vector of \(X + \text{Lin}\{\{v\}\} \), and let \(W \) be a subspace of \(X + \text{Lin}\{\{v\}\} \). Suppose \(v = y \) and \(X = W \) and \(v \notin X \). Let \(w_1, w_2 \) be vectors of \(X + \text{Lin}\{\{v\}\} \), and let \(x_1, x_2 \) be vectors of \(X \), and let \(r_1, r_2 \) be real numbers. If \(w_1 \triangleleft (W, \text{Lin}\{\{y\}\}) = \{x_1, r_1 \cdot v\} \) and \(w_2 \triangleleft (W, \text{Lin}\{\{y\}\}) = \{x_2, r_2 \cdot v\} \), then \((w_1 + w_2) \triangleleft (W, \text{Lin}\{\{y\}\}) = \{x_1 + x_2, (r_1 + r_2) \cdot v\} \).
(30) Let \(v \) be a vector of \(V \), and let \(X \) be a subspace of \(V \), and let \(y \) be a vector of \(X + \text{Lin}(\{v\}) \), and let \(W \) be a subspace of \(X + \text{Lin}(\{v\}) \). Suppose \(v = y \) and \(X = W \) and \(v \notin X \). Let \(w \) be a vector of \(X + \text{Lin}(\{v\}) \), and let \(x \) be a vector of \(X \), and let \(t, r \) be real numbers. If \(w \preceq (W, \text{Lin}(\{y\})) = (x, r \cdot v) \), then \((t \cdot w) \preceq (W, \text{Lin}(\{y\})) = (t \cdot x, t \cdot r \cdot v)\).

4. Functionals

Let \(V \) be an RLS structure.

(Def.2) A function from the carrier of \(V \) into \(\mathbb{R} \) is called a functional in \(V \).

Let us consider \(V \). A functional in \(V \) is subadditive if:

(Def.3) For all vectors \(x, y \) of \(V \) holds \(\text{it}(x + y) \leq \text{it}(x) + \text{it}(y) \).

A functional in \(V \) is additive if:

(Def.4) For all vectors \(x, y \) of \(V \) holds \(\text{it}(x + y) = \text{it}(x) + \text{it}(y) \).

A functional in \(V \) is homogeneous if:

(Def.5) For every vector \(x \) of \(V \) and for every real number \(r \) holds \(\text{it}(r \cdot x) = r \cdot \text{it}(x) \).

A functional in \(V \) is positively homogeneous if:

(Def.6) For every vector \(x \) of \(V \) and for every real number \(r \) such that \(r > 0 \) holds \(\text{it}(r \cdot x) = r \cdot \text{it}(x) \).

A functional in \(V \) is semi-homogeneous if:

(Def.7) For every vector \(x \) of \(V \) and for every real number \(r \) such that \(r \geq 0 \) holds \(\text{it}(r \cdot x) = r \cdot \text{it}(x) \).

A functional in \(V \) is absolutely homogeneous if:

(Def.8) For every vector \(x \) of \(V \) and for every real number \(r \) holds \(\text{it}(r \cdot x) = |r| \cdot \text{it}(x) \).

A functional in \(V \) is 0-preserving if:

(Def.9) \(\text{It}(0_V) = 0 \).

Let us consider \(V \). One can verify the following observations:

* every functional in \(V \) which is additive is also subadditive,
* every functional in \(V \) which is homogeneous is also positively homogeneous,
* every functional in \(V \) which is semi-homogeneous is also positively homogeneous,
* every functional in \(V \) which is semi-homogeneous is also 0-preserving,
* every functional in \(V \) which is absolutely homogeneous is also semi-homogeneous, and
* every functional in \(V \) which is 0-preserving and positively homogeneous is also semi-homogeneous.
Let us consider V. Observe that there exists a functional in V which is additive absolutely homogeneous and homogeneous.

We now state four propositions:

(31) For every homogeneous functional L in V and for every vector v of V holds $L(-v) = -L(v)$.

(32) For every linear functional L in V and for all vectors v_1, v_2 of V holds $L(v_1 - v_2) = L(v_1) - L(v_2)$.

(33) For every additive functional L in V holds $L(0_V) = 0$.

(34) Let X be a subspace of V, and let f_1 be a linear functional in X, and let v be a vector of V, and let y be a vector of $X + \text{Lin}(\{v\})$. Suppose $v = y$ and $v \notin X$. Let r be a real number. Then there exists a linear functional p_1 in $X + \text{Lin}(\{v\})$ such that $p_1 \upharpoonright (\text{the carrier of } X) = f_1$ and $p_1(y) = r$.

5. Hahn-Banach Theorem

One can prove the following three propositions:

(35) Let V be a real linear space, and let X be a subspace of V, and let q be a Banach functional in V, and let f_1 be a linear functional in X. Suppose that for every vector x of X and for every vector v of V such that $x = v$ holds $f_1(x) \leq q(v)$. Then there exists a linear functional p_1 in V such that $p_1 \upharpoonright (\text{the carrier of } X) = f_1$ and for every vector x of V holds $p_1(x) \leq q(x)$.

(36) For every real normed space V holds the norm of V is an absolutely homogeneous subadditive functional in V.

(37) Let V be a real normed space, and let X be a subspace of V, and let f_1 be a linear functional in X. Suppose that for every vector x of X and for every vector v of V such that $x = v$ holds $f_1(x) \leq \|v\|$. Then there exists a linear functional p_1 in V such that $p_1 \upharpoonright (\text{the carrier of } X) = f_1$ and for every vector x of V holds $p_1(x) \leq \|x\|$.

References

Received July 8, 1993