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Summary. We define the category of left modules over an asso-
ciative ring. The carriers of the modules are included in a universum.
The universum is a parameter of the category.
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The papers [12], [1], [2], [4], [5], [7], [3], [11], [10], [9], [6], and [8] provide the
terminology and notation for this paper. For simplicity we adopt the following
convention: x, y are arbitrary, D is a non-empty set, U1 is a universal class, R

is an associative ring, and G, H are left modules over R. Let us consider R. A
non-empty set is said to be a non-empty set of left-modules of R if:

(Def.1) for every element x of it holds x is a strict left module over R.

In the sequel V is a non-empty set of left-modules of R. Let us consider R,
V . We see that the element of V is a left module over R.

We now state two propositions:

(1) For every left module morphism f of R and for every element x of {f}
holds x is a left module morphism of R.

(2) For every strict morphism f from G to H and for every element x of
{f} holds x is a strict morphism from G to H.

Let us consider R. A non-empty set is said to be a non-empty set of mor-
phisms of left-modules of R if:

(Def.2) for every element x of it holds x is a strict left module morphism of R.

Let us consider R, and let M be a non-empty set of morphisms of left-modules
of R. We see that the element of M is a left module morphism of R.

Next we state the proposition

(3) For every strict left module morphism f of R holds {f} is a non-empty
set of morphisms of left-modules of R.
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Let us consider R, G, H. A non-empty set of morphisms of left-modules of
R is called a non-empty set of morphisms of left-modules from G into H if:

(Def.3) for every element x of it holds x is a strict morphism from G to H.

The following two propositions are true:

(4) D is a non-empty set of morphisms of left-modules from G into H if
and only if for every element x of D holds x is a strict morphism from G

to H.

(5) For every strict morphism f from G to H holds {f} is a non-empty set
of morphisms of left-modules from G into H.

Let us consider R, G, H. The functor Morphs(G,H) yields a non-empty set
of morphisms of left-modules from G into H and is defined as follows:

(Def.4) x ∈ Morphs(G,H) if and only if x is a strict morphism from G to H.

Let us consider R, G, H, and let M be a non-empty set of morphisms of
left-modules from G into H. We see that the element of M is a morphism from
G to H.

Let us consider x, y, R. The predicate Pob x, y,R is defined by:

(Def.5) there exist arbitrary x1, x2 such that x = 〈〈x1, x2〉〉 and there exists a
strict left module G over R such that y = G and x1 = the carrier of G

and x2 = the left multiplication of G.

One can prove the following propositions:

(6) For arbitrary x, y1, y2 such that Pob x, y1, R and Pob x, y2, R holds y1 =
y2.

(7) For every U1 there exists x such that x ∈ {〈〈G, f〉〉}, where G ranges
over elements of GroupObj(U1), and f ranges over elements of
{∅}[: the carrier of R, {∅} :]

and Pob x, RΘ, R.

Let us consider U1, R. The functor LModObj(U1, R) yielding a non-empty
set is defined as follows:

(Def.6) for every y holds y ∈ LModObj(U1, R) if and only if there exists x such
that x ∈ {〈〈G, f〉〉}, where G ranges over elements of GroupObj(U1), and
f ranges over elements of {∅}[: the carrier of R, {∅} :] and Pob x, y,R.

One can prove the following two propositions:

(8) RΘ ∈ LModObj(U1, R).

(9) For every element x of LModObj(U1, R) holds x is a strict left module
over R.

Let us consider U1, R. Then LModObj(U1, R) is a non-empty set of left-
modules of R.

Let us consider R, V . The functor MorphsV yields a non-empty set of
morphisms of left-modules of R and is defined as follows:

(Def.7) for every x holds x ∈ MorphsV if and only if there exist strict elements
G, H of V such that x is a strict morphism from G to H.
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We now define two new functors. Let us consider R, V , and let F be an
element of MorphsV . The functor dom′ F yields an element of V and is defined
as follows:

(Def.8) dom′ F = domF .

The functor cod′ F yields an element of V and is defined by:

(Def.9) cod′ F = cod F .

Let us consider R, V , and let G be an element of V . The functor IG yielding
a strict element of MorphsV is defined as follows:

(Def.10) IG = IG.

We now define three new functors. Let us consider R, V . The functor domV

yields a function from MorphsV into V and is defined by:

(Def.11) for every element f of MorphsV holds (domV )(f) = dom′ f .

The functor cod V yields a function from MorphsV into V and is defined as
follows:

(Def.12) for every element f of MorphsV holds (cod V )(f) = cod′ f .

The functor IV yields a function from V into MorphsV and is defined by:

(Def.13) for every element G of V holds IV (G) = IG.

One can prove the following three propositions:

(10) For all elements g, f of MorphsV such that dom′ g = cod′ f there exist
strict elements G1, G2, G3 of V such that g is a morphism from G2 to G3

and f is a morphism from G1 to G2.

(11) For all elements g, f of MorphsV such that dom′ g = cod′ f holds
g · f ∈ MorphsV .

(12) For all elements g, f of MorphsV such that dom g = cod f holds g ·f ∈
MorphsV .

Let us consider R, V . The functor comp V yields a partial function from
[:MorphsV, MorphsV :] to MorphsV and is defined by:

(Def.14) for all elements g, f of MorphsV holds 〈〈g, f〉〉 ∈ dom comp V if and
only if dom′ g = cod′ f and for all elements g, f of MorphsV such that
〈〈g, f〉〉 ∈ dom comp V holds (comp V )(〈〈g, f〉〉) = g · f .

The following proposition is true

(13) For all elements g, f of MorphsV holds 〈〈g, f〉〉 ∈ domcomp V if and
only if dom g = cod f .

Let us consider U1, R. The functor LModCat(U1, R) yields a strict category
structure and is defined by:

(Def.15) LModCat(U1, R) = 〈LModObj(U1, R),Morphs LModObj(U1, R),dom LModObj(U1, R),
cod LModObj(U1, R), comp LModObj(U1, R), ILModObj(U1,R)〉.

One can prove the following propositions:

(14) For all morphisms f , g of LModCat(U1, R) holds 〈〈g, f〉〉 ∈ dom (the
composition of LModCat(U1, R)) if and only if dom g = cod f .
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(15) Let f be a morphism of LModCat(U1, R). Then for every element f ′

of Morphs LModObj(U1, R) and for every object b of LModCat(U1, R)
and for every element b′ of LModObj(U1, R) holds f is a strict element
of Morphs LModObj(U1, R) and f ′ is a morphism of LModCat(U1, R)
and b is a strict element of LModObj(U1, R) and b′ is an object of
LModCat(U1, R).

(16) For every object b of LModCat(U1, R) and for every element b′ of
LModObj(U1, R) such that b = b′ holds idb = Ib′ .

(17) For every morphism f of LModCat(U1, R) and for every element f ′ of
MorphsLModObj(U1, R) such that f = f ′ holds dom f = dom f ′ and
cod f = cod f ′.

(18) Let f , g be morphisms of LModCat(U1, R). Let f ′, g′ be elements of
MorphsLModObj(U1, R). Suppose f = f ′ and g = g′. Then

(i) dom g = cod f if and only if dom g′ = cod f ′,
(ii) dom g = cod f if and only if 〈〈g′, f ′〉〉 ∈ dom comp LModObj(U1, R),
(iii) if dom g = cod f , then g · f = g′ · f ′,
(iv) dom f = dom g if and only if dom f ′ = dom g′,
(v) cod f = cod g if and only if cod f ′ = cod g′.

Let us consider U1, R. Then LModCat(U1, R) is a strict category.
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