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The articles [19], [25], [14], [10], [1], [16], [2], [3], [24], [11], [18], [9], [26], [6], [17], [7], [8], [12],
[13], [20], [15], [4], [5], [21], [23], and [22] provide the notation and terminology for this paper.

The following propositions are true:

(1) For every non constant standard special circular sequencef holds BDDL̃( f ) =
RightComp( f ) or BDDL̃( f ) = LeftComp( f ).

(2) For every non constant standard special circular sequencef holds UBDL̃( f ) =
RightComp( f ) or UBDL̃( f ) = LeftComp( f ).

(3) Let G be a Go-board,f be a finite sequence of elements ofE2
T, andk be a natural number.

Suppose 1≤ k andk+ 1 ≤ len f and f is a sequence which elements belong toG. Then
left cell( f ,k,G) is closed.

(4) Let G be a Go-board,p be a point ofE2
T, and i, j be natural numbers. Suppose 1≤ i

and i + 1≤ lenG and 1≤ j and j + 1≤ widthG. Then p∈ Intcell(G, i, j) if and only if the
following conditions are satisfied:

(i) (G◦ (i, j))1 < p1,

(ii) p1 < (G◦ (i +1, j))1,

(iii) (G◦ (i, j))2 < p2, and

(iv) p2 < (G◦ (i, j +1))2.

(5) For every non constant standard special circular sequencef holds BDDL̃( f ) is connected.

Let f be a non constant standard special circular sequence. One can check that BDDL̃( f ) is
connected.

LetC be a simple closed curve and letn be a natural number. The functor SpanStart(C,n) yields
a point ofE2

T and is defined as follows:

(Def. 1) SpanStart(C,n) = Gauge(C,n)◦ (X-SpanStart(C,n),Y-SpanStart(C,n)).

We now state four propositions:

(6) LetC be a simple closed curve andn be a natural number. Ifn is sufficiently large forC,
then(Span(C,n))1 = SpanStart(C,n).

1This work has been partially supported by CALCULEMUS grant HPRN-CT-2000-00102.

1 c© Association of Mizar Users

http://mizar.org/JFM/Vol14/jordan14.html


PROPERTIES OF THE INTERNAL APPROXIMATION OF. . . 2

(7) For every simple closed curveC and for every natural numbern such thatn is sufficiently
large forC holds SpanStart(C,n) ∈ BDDC.

(8) LetC be a simple closed curve andn, k be natural numbers. Supposen is sufficiently large
for C. Suppose 1≤ k andk+1≤ lenSpan(C,n). Then rightcell(Span(C,n),k,Gauge(C,n))
missesC and left cell(Span(C,n),k,Gauge(C,n)) meetsC.

(9) LetC be a simple closed curve andn be a natural number. Ifn is sufficiently large forC,
thenC misses̃L(Span(C,n)).

LetC be a simple closed curve and letnbe a natural number. Observe thatRightComp(Span(C,n))
is compact.

One can prove the following propositions:

(10) LetC be a simple closed curve andn be a natural number. Ifn is sufficiently large forC,
thenC meets LeftComp(Span(C,n)).

(11) LetC be a simple closed curve andn be a natural number. Ifn is sufficiently large forC,
thenC misses RightComp(Span(C,n)).

(12) For every simple closed curveC and for every natural numbern such thatn is sufficiently
large forC holdsC⊆ LeftComp(Span(C,n)).

(13) For every simple closed curveC and for every natural numbern such thatn is sufficiently
large forC holdsC⊆ UBD L̃(Span(C,n)).

(14) For every simple closed curveC and for every natural numbern such thatn is sufficiently
large forC holds BDDL̃(Span(C,n))⊆ BDDC.

(15) For every simple closed curveC and for every natural numbern such thatn is sufficiently
large forC holds UBDC⊆ UBD L̃(Span(C,n)).

(16) For every simple closed curveC and for every natural numbern such thatn is sufficiently
large forC holds RightComp(Span(C,n))⊆ BDDC.

(17) For every simple closed curveC and for every natural numbern such thatn is sufficiently
large forC holds UBDC⊆ LeftComp(Span(C,n)).

(18) LetC be a simple closed curve andn be a natural number. Ifn is sufficiently large forC,
then UBDC misses BDD̃L(Span(C,n)).

(19) LetC be a simple closed curve andn be a natural number. Ifn is sufficiently large forC,
then UBDC misses RightComp(Span(C,n)).

(20) LetC be a simple closed curve,P be a subset ofE2
T, andn be a natural number. Supposen

is sufficiently large forC. If P is outside component ofC, thenP misses̃L(Span(C,n)).

(21) LetC be a simple closed curve andn be a natural number. Ifn is sufficiently large forC,
then UBDC misses̃L(Span(C,n)).

(22) For every simple closed curveC and for every natural numbern such thatn is sufficiently
large forC holdsL̃(Span(C,n))⊆ BDDC.

(23) LetC be a simple closed curve andi, j, k, n be natural numbers. Supposen is sufficiently
large forC and 1≤ k and k ≤ lenSpan(C,n) and 〈〈i, j〉〉 ∈ the indices of Gauge(C,n) and
(Span(C,n))k = Gauge(C,n)◦ (i, j). Theni > 1.

(24) LetC be a simple closed curve andi, j, k, n be natural numbers. Supposen is sufficiently
large forC and 1≤ k and k ≤ lenSpan(C,n) and 〈〈i, j〉〉 ∈ the indices of Gauge(C,n) and
(Span(C,n))k = Gauge(C,n)◦ (i, j). Theni < lenGauge(C,n).
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(25) LetC be a simple closed curve andi, j, k, n be natural numbers. Supposen is sufficiently
large forC and 1≤ k and k ≤ lenSpan(C,n) and 〈〈i, j〉〉 ∈ the indices of Gauge(C,n) and
(Span(C,n))k = Gauge(C,n)◦ (i, j). Then j > 1.

(26) LetC be a simple closed curve andi, j, k, n be natural numbers. Supposen is sufficiently
large forC and 1≤ k and k ≤ lenSpan(C,n) and 〈〈i, j〉〉 ∈ the indices of Gauge(C,n) and
(Span(C,n))k = Gauge(C,n)◦ (i, j). Then j < widthGauge(C,n).

(27) For every simple closed curveC and for every natural numbern such thatn is sufficiently
large forC holds Y-SpanStart(C,n) < widthGauge(C,n).

(28) LetC be a compact non vertical non horizontal subset ofE2
T andn, m be natural numbers.

If m≥ n andn≥ 1, then X-SpanStart(C,m) = 2m−′n · (X-SpanStart(C,n)−2)+2.

(29) LetC be a compact non vertical non horizontal subset ofE2
T andn, m be natural numbers.

Supposen≤ mandn is sufficiently large forC. Thenm is sufficiently large forC.

(30) LetG be a Go-board,f be a finite sequence of elements ofE2
T, andi, j be natural numbers.

Supposef is a sequence which elements belong toG and special andi ≤ lenG and j ≤
widthG. Then cell(G, i, j)\ L̃( f ) is connected.

(31) Let C be a simple closed curve andn, k be natural numbers. Supposen is sufficiently
large forC and Y-SpanStart(C,n)≤ k andk≤ 2n−′ApproxIndexC · (Y-InitStartC−′ 2)+2. Then
cell(Gauge(C,n),X-SpanStart(C,n)−′ 1,k)\ L̃(Span(C,n))⊆ BDD L̃(Span(C,n)).

(32) LetC be a subset ofE2
T andn, m, i be natural numbers. Ifm≤ n and 1< i and i + 1 <

lenGauge(C,m), then 2n−
′m · (i−2)+2+1 < lenGauge(C,n).

(33) LetC be a simple closed curve andn, m be natural numbers. Ifn is sufficiently large forC
andn≤ m, then RightComp(Span(C,n)) meets RightComp(Span(C,m)).

(34) LetG be a Go-board andf be a finite sequence of elements ofE2
T. Supposef is a sequence

which elements belong toG and special. Leti, j be natural numbers. Ifi ≤ lenG and j ≤
widthG, then Intcell(G, i, j)⊆ (L̃( f ))c.

(35) LetC be a simple closed curve andn, m be natural numbers. Ifn is sufficiently large forC
andn≤ m, thenL̃(Span(C,m))⊆ LeftComp(Span(C,n)).

(36) LetC be a simple closed curve andn, m be natural numbers. Ifn is sufficiently large forC
andn≤ m, then RightComp(Span(C,n))⊆ RightComp(Span(C,m)).

(37) LetC be a simple closed curve andn, m be natural numbers. Ifn is sufficiently large forC
andn≤ m, then LeftComp(Span(C,m))⊆ LeftComp(Span(C,n)).
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[4] Czesław Bylínski. Gauges.Journal of Formalized Mathematics, 11, 1999.http://mizar.org/JFM/Vol11/jordan8.html.
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