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The articles[[19],[[25],[114]/110]/T1][116][12], 18], 1241/ T11]/T18] 9]/ [26] I6]/ [17] 171 18] /[ 112],
[13], [20], [15], [4], [5], [21], [23], and [22] provide the notation and terminology for this paper.
The following propositions are true:

(1) For every non constant standard special circular sequdnd®lds BDDZ(f) =
RightComg f) or BDD L(f) = LeftComp(f).

(2) For every non constant standard special circular sequédndelds UBDZ(f) =
RightComg f) or UBD L(f) = LeftComp(f).

(3) LetG be a Go-boardf be a finite sequence of elementszq%, andk be a natural number.
Suppose K kandk+1 < lenf and f is a sequence which elements belongxo Then
left_cell(f,k,G) is closed.

(4) LetG be a Go-boardp be a point off;%, andi, j be natural numbers. Suppose<li
andi+1<lenG and 1< j andj+ 1 < widthG. Thenp € Intcell(G,i, j) if and only if the
following conditions are satisfied:

() (Gof(i,j)1<p,

(i) p1<(Go(i+1,j)),
(i) (Ge(i,]))2 < pz, and
(iv)  p2<(Go(i,j+1))2

(5) For every non constant standard special circular sequiehots BDDZ(f) is connected.

Let f be a non constant standard special circular sequence. One can check tha( BO®
connected.

LetC be a simple closed curve and tebbe a natural number. The functor Span3@m) yields
a point of £2 and is defined as follows:

(Def. 1) SpanStaf€,n) = GaugéC,n) o (X-SpanStarfC, n), Y-SpanStariC, n)).
We now state four propositions:

(6) LetC be a simple closed curve amde a natural number. H is sufficiently large foiC,
then(Spar{C,n)); = SpanStafC,n).
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(7) For every simple closed cur@and for every natural numbersuch than is sufficiently
large forC holds SpanStaf€,n) € BDDC.

(8) LetC be a simple closed curve andk be natural numbers. Suppasés sufficiently large
for C. Suppose X kandk+ 1 <lenSparfiC,n). Then rightcell(Spar{C,n), k, GaugéC,n))
misse<C and leftcell(Spar{C,n),k, GaugéC,n)) meetsC.

(9) LetC be a simple closed curve amdoe a natural number. I is sufficiently large foC,
thenC missesZ(Spar{C,n)).

LetC be a simple closed curve and tgbe a natural number. Observe tRaghtComgSpar{C, n))
is compact.
One can prove the following propositions:

(10) LetC be a simple closed curve amdoe a natural number. H is sufficiently large forC,
thenC meets LeftCom(Spar{C,n)).

(11) LetC be a simple closed curve amdoe a natural number. H is sufficiently large forC,
thenC misses RightCom(spar{C,n)).

(12) For every simple closed cur@and for every natural numbersuch than is sufficiently
large forC holdsC C LeftCompSpar{C,n)).

(13) For every simple closed cur@and for every natural numbersuch than is sufficiently
large forC holdsC C UBD L(Spar{C,n)).

(14) For every simple closed cur@and for every natural numbersuch than is sufficiently
large forC holds BDDL(Spar{C,n)) C BDDC.

(15) For every simple closed cur@and for every natural numbersuch than is sufficiently
large forC holds UBDC C UBD £L(Spar{C,n)).

(16) For every simple closed cur@and for every natural numbersuch than is sufficiently
large forC holds RightCompSpar{C,n)) C BDDC.

(17) For every simple closed cur@and for every natural numbersuch than is sufficiently
large forC holds UBDC C LeftComp(SpariC,n)).

(18) LetC be a simple closed curve amcbe a natural number. i is sufficiently large foC,
then UBDC misses BDDY.(Spar{C,n)).

(19) LetC be a simple closed curve amde a natural number. H is sufficiently large foC,
then UBDC misses RightCom({spar{C,n)).

(20) LetC be a simple closed curvB,be a subset OE% andn be a natural number. Suppase
is sufficiently large foC. If P is outside component &, thenP missesZ(Spar{C,n)).

(21) LetC be a simple closed curve amcbe a natural number. i is sufficiently large foC,
then UBDC missesL(Spar{C,n)).

(22) For every simple closed cur@and for every natural numbersuch than is sufficiently
large forC holds £(SparfC,n)) C BDDC.

(23) LetC be a simple closed curve andj, k, n be natural numbers. Suppasés sufficiently
large forC and 1< k andk < lenSpariC,n) and (i, j) € the indices of Gaug€,n) and
(Spar{C,n))x = GaugéC,n)o (i, j). Theni > 1.

(24) LetC be a simple closed curve andj, k, n be natural numbers. Suppasés sufficiently
large forC and 1< k andk < lenSpaifC,n) and (i, j} € the indices of Gaug€,n) and
(Spar{C, n))x = GaugéC,n)o (i, j). Theni < lenGaugéC, n).



PROPERTIES OF THE INTERNAL APPROXIMATION OF. . 3

(25) LetC be a simple closed curve andj, k, n be natural numbers. Suppasés sufficiently
large forC and 1< k andk < lenSpaiiC,n) and (i, j} € the indices of Gaug€,n) and
(Spar{C,n))x = GaugéC,n)o (i, j). Thenj > 1.

(26) LetC be a simple closed curve andj, k, n be natural numbers. Suppasés sufficiently
large forC and 1< k andk < lenSpaifiC,n) and (i, j} € the indices of Gaug€,n) and
(Spar{C,n))x = GaugéC,n)o (i, j). Thenj < widthGaugéC,n).

(27) For every simple closed cur@and for every natural numbersuch than is sufficiently
large forC holds Y-SpanStaf€, n) < width GaugéC, n).

(28) LetC be a compact non vertical non horizontal subseEgfandn, m be natural numbers.
If m>nandn> 1, then X-SpanStaf€,m) = 2™ M. (X-SpanStariC, n) — 2) + 2.

(29) LetC be a compact non vertical non horizontal subs@éhndn, m be natural numbers.
Supposen < mandn is sufficiently large folC. Thenmis sufficiently large foC.

(30) LetG be a Go-boardf be a finite sequence of elements&f, andi, j be natural numbers.
Supposef is a sequence which elements belongG@nd special and < lenG and j <
widthG. Then cel(G,i, j) \ L(f) is connected.

(31) LetC be a simple closed curve amg k be natural numbers. Supposas sufficiently
large forC and Y-SpanStaf€, n) < k andk < 2n-"ApproxindexC . (y_|njtStartC —' 2) + 2. Then
cell(GaugéC, n), X-SpanStariC,n) —' 1,k) \ L(SparC,n)) C BDD £(Spar{C,n)).

(832) LetC be a subset o‘E% andn, m, i be natural numbers. th<nand 1<iandi+1<
len GaugéC,m), then 2-'™. (i —2) + 2+ 1 < lenGaugéc, n).

(33) LetC be a simple closed curve andm be natural numbers. ffis sufficiently large folC
andn < m, then RightComgSpar{C,n)) meets RightCom{Bpar{C,m)).

(84) LetGbe a Go-board anfl be a finite sequence of eIementsEﬁ Supposd is a sequence
which elements belong tG and special. Let, j be natural numbers. If<lenG andj <
widthG, then Intcel(G,i, j) C (L(f))C.

(35) LetC be a simple closed curve andm be natural numbers. ifis sufficiently large foC
andn < m, then£(SparfC,m)) C LeftCompSpar{C,n)).

(36) LetC be a simple closed curve angdm be natural numbers. Hfis sufficiently large foC
andn < m, then RightComfSpar{C,n)) C RightComgSpar{C,m)).

(37) LetC be a simple closed curve angdm be natural numbers. His sufficiently large folC
andn < m, then LeftComgSpar{C,m)) C LeftComp(Spar{C,n)).
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