The Mizar article:

Semi-Affine Space

by
Eugeniusz Kusak, and
Krzysztof Radziszewski

Received November 30, 1990

Copyright (c) 1990 Association of Mizar Users

MML identifier: SEMI_AF1
[ MML identifier index ]


environ

 vocabulary ANALOAF, DIRAF, INCSP_1, PARSP_2, FDIFF_1, SEMI_AF1;
 notation STRUCT_0, ANALOAF, DIRAF;
 constructors AFF_1, XBOOLE_0;
 clusters ANALOAF, ZFMISC_1, XBOOLE_0;
 theorems PARDEPAP, DIRAF;

begin

definition let IT be non empty AffinStruct;
 attr IT is Semi_Affine_Space-like means
 :Def1: (for a,b being Element of IT holds a,b // b,a) &
          (for a,b,c being Element of IT holds a,b // c,c) &
          (for a,b,p,q,r,s being Element of IT holds
             ( a<>b & a,b // p,q & a,b // r,s implies p,q // r,s )) &
          (for a,b,c being Element of IT holds
             ( a,b // a,c implies b,a // b,c )) &
          (ex a,b,c being Element of IT st not a,b // a,c) &
          (for a,b,p being Element of IT
           ex q being Element of IT st
             ( a,b // p,q & a,p // b,q )) &
          (for o,a being Element of IT holds
           (ex p being Element of IT st
           (for b,c being Element of IT holds o,a // o,p &
           (ex d being Element of IT st
             ( o,p // o,b implies o,c // o,d & p,c // b,d ))))) &
          (for o,a,a',b,b',c,c' being Element of IT holds
             ( not o,a // o,b & not o,a // o,c & o,a // o,a' & o,b // o,b' &
               o,c // o,c' & a,b // a',b' & a,c // a',c' implies
               b,c // b',c' )) &
          (for a,a',b,b',c,c' being Element of IT holds
         ( not a,a' // a,b & not a,a' // a,c & a,a' // b,b' & a,a' // c,c' &
               a,b // a',b' & a,c // a',c' implies b,c // b',c' )) &
          (for a1,a2,a3,b1,b2,b3 being Element of IT holds
     ( a1,a2 // a1,a3 & b1,b2 // b1,b3 & a1,b2 // a2,b1 & a2,b3 // a3,b2
               implies a3,b1 // a1,b3 )) &
          (for a,b,c,d being Element of IT holds
             ( not a,b // a,c & a,b // c,d & a,c // b,d implies
             not a,d // b,c ));
end;

definition
 cluster Semi_Affine_Space-like (non empty AffinStruct);
existence proof consider SAS being AffinPlane such that
A1: for o,a,a',b,b',c,c' being Element of SAS holds
     ( not o,a // o,b & not o,a // o,c & o,a // o,a' & o,b // o,b' &
  o,c // o,c' & a,b // a',b' & a,c // a',c' implies b,c // b',c' ) and
A2: for a,a',b,b',c,c' being Element of SAS holds
     ( not a,a' // a,b & not a,a' // a,c & a,a' // b,b' & a,a' // c,c' &
  a,b // a',b' & a,c // a',c' implies b,c // b',c' ) and
A3: for a1,a2,a3,b1,b2,b3 being Element of SAS holds
      ( a1,a2 // a1,a3 & b1,b2 // b1,b3 & a1,b2 // a2,b1 & a2,b3 // a3,b2
              implies a3,b1 // a1,b3 ) and
A4: for a,b,c,d being Element of SAS holds
     ( not a,b // a,c & a,b // c,d & a,c // b,d implies not a,d // b,c )
by PARDEPAP:5; reconsider AS=SAS as non empty AffinStruct; take AS;
thus for a,b being Element of AS holds a,b // b,a
 by DIRAF:47;
thus thesis by A1,A2,A3,A4,DIRAF:47,PARDEPAP:6; end;
end;

definition
 mode Semi_Affine_Space is Semi_Affine_Space-like (non empty AffinStruct);
end;

::
::                        AXIOMS OF SEMI_AFFINE SPACE
::

reserve SAS for Semi_Affine_Space;
reserve a,a',a1,a2,a3,a4,b,b',c,c',d,d',d1,d2,o,p,p1,p2,q,r,r1,r2,s,x,
        y,t,z for Element of SAS;


canceled 11;

theorem
Th12: a,b // a,b
proof b,a // b,b by Def1; hence a,b // a,b by Def1; end;

theorem
Th13: a,b // c,d implies c,d // a,b
proof assume A1: a,b // c,d;
  a,b // a,b by Th12; then a<>b implies c,d // a,b by A1,Def1;
hence thesis by Def1; end;

theorem
Th14: a,a // b,c
proof b,c // a,a by Def1; hence a,a // b,c by Th13; end;

theorem
Th15: a,b // c,d implies b,a // c,d
proof assume A1: a,b // c,d;
  a,b // b,a by Def1; then a<>b implies b,a // c,d by A1,Def1;
hence thesis by A1; end;

theorem
Th16: a,b // c,d implies a,b // d,c
proof assume a,b // c,d; then c,d // a,b by Th13; then d,c // a,b by Th15;
hence a,b // d,c by Th13; end;

theorem
Th17: a,b // c,d implies
      b,a // c,d & a,b // d,c & b,a // d,c & c,d // a,b &
      d,c // a,b & c,d // b,a & d,c // b,a
proof assume a,b // c,d; then c,d // a,b by Th13;
then A1: d,c // a,b by Th15; then A2: d,c // b,a by Th16;
then c,d // b,a by Th15;
hence thesis by A1,A2,Th13,Th15; end;

theorem
Th18: a,b // a,c implies
       a,c // a,b & b,a // a,c & a,b // c,a & a,c // b,a & b,a // c,a &
       c,a // a,b & c,a // b,a & b,a // b,c & a,b // b,c & b,a // c,b &
       b,c // b,a & a,b // c,b & c,b // b,a & b,c // a,b & c,b // a,b &
       c,a // c,b & a,c // c,b & c,a // b,c & a,c // b,c & c,b // c,a &
       b,c // c,a & c,b // a,c & b,c // a,c
proof assume A1: a,b // a,c; then A2: b,a // b,c by Def1;
     a,c // a,b by A1,Th13; then c,a // c,b by Def1;
hence thesis by A1,A2,Th17; end;

canceled;

theorem
Th20: a<>b & p,q // a,b & a,b // r,s implies p,q // r,s
proof assume a<>b & p,q // a,b & a,b // r,s;
then a<>b & a,b // p,q & a,b // r,s by Th17; hence thesis by Def1; end;

theorem
  not a,b // a,d implies a<>b & b<>d & d<>a by Def1,Th12,Th14;

theorem
   not a,b // p,q implies a<>b & p<>q by Def1,Th14;

theorem
   a,b // a,x & b,c // b,x & c,a // c,x implies a,b // a,c
proof assume A1: a,b // a,x & b,c // b,x & c,a // c,x;

   now assume a<>x;
then a<>x & a,x // a,b & a,x // a,c by A1,Th18; hence thesis by Def1; end;
hence thesis by A1,Th18; end;

canceled;

theorem
Th25: not a,b // a,c & p<>q implies not p,q // p,a or not p,q // p,b or
      not p,q // p,c
proof assume A1: not a,b // a,c & p<>q; now assume a<>p & p,q // p,a &
p,q // p,b & p,q // p,c; then a<>p & p,a // p,b & p,a // p,c by A1,Def1;
then a<>p & a,p // a,b & a,p // a,c by Def1; hence contradiction by A1,Def1;
end;
hence thesis by A1,Def1; end;

theorem
Th26: p<>q implies ex r st not p,q // p,r
proof assume A1: p<>q; consider a,b,c such that A2: not a,b // a,c by Def1;
  not p,q // p,a or not p,q // p,b or not p,q // p,c by A1,A2,Th25;
hence thesis; end;

canceled;

theorem
Th28: not a,b // a,c implies not a,b // c,a & not b,a // a,c & not b,a // c,a &
      not a,c // a,b & not a,c // b,a & not c,a // a,b & not c,a // b,a &
      not b,a // b,c & not b,a // c,b & not a,b // b,c & not a,b // c,b &
      not b,c // b,a & not b,c // a,b & not c,b // a,b & not c,b // b,a &
      not c,b // c,a & not c,b // a,c & not b,c // c,a & not b,c // a,c &
      not c,a // c,b & not c,a // b,c & not a,c // b,c & not a,c // c,b
proof assume A1: not a,b // a,c; assume A2: not thesis;
A3:  not b,a // b,c by A1,Th18;
   now assume a,c // c,b; then c,a // c,b by Th17;
 hence contradiction by A1,Th18; end;
hence thesis by A1,A2,A3,Th17; end;

theorem
Th29: not a,b // c,d & a,b // p,q & c,d // r,s & p<>q & r<>s implies
not p,q // r,s
proof assume A1: not a,b // c,d & a,b // p,q & c,d // r,s & p<>q & r<>s;
assume p,q // r,s; then a,b // r,s & c,d // r,s & r<>s by A1,Th20; then r<>
s &
r,s // a,b & r,s // c,d by Th17; hence contradiction by A1,Def1; end;

theorem
Th30: not a,b // a,c & a,b // p,q & a,c // p,r & b,c // q,r & p<>q implies
not p,q // p,r
proof assume A1: not a,b // a,c & a,b // p,q & a,c // p,r & b,c // q,r & p<>q;
   now assume p=r; then p<>q & p,q // a,b & p,q // b,c by A1,Th17
; then a,b // b,c
by Def1; then b,a // b,c by Th15;
hence contradiction by A1,Th18; end;
  hence thesis by A1,Th29; end;

theorem
Th31: not a,b // a,c & a,c // p,r & b,c // p,r implies p=r
proof assume not a,b // a,c & a,c // p,r & b,c // p,r;
then not a,c // b,c & p,r // a,c & p,r // b,c
by Th17,Th28; hence thesis by Def1; end;

theorem
Th32: not p,q // p,r1 & p,r1 // p,r2 & q,r1 // q,r2 implies r1=r2
proof assume not p,q // p,r1 & p,r1 // p,r2 & q,r1 // q,r2;
then not r1,p // r1,q &
r1,r2 // r1,p & r1,r2 // r1,q by Th28; hence thesis by Def1; end;

theorem
Th33: not a,b // a,c & a,b // p,q & a,c // p,r1 & a,c // p,r2 & b,c // q,r1 &
b,c // q,r2 implies r1=r2
proof assume A1: not a,b // a,c & a,b // p,q & a,c // p,r1 & a,c // p,r2 &
 b,c // q,r1 & b,c // q,r2; A2: now assume p=q; then p=r1 & p=r2 by A1,Th31;
 hence thesis; end; now assume p<>q; then not p,q // p,r1 & a<>c & b<>c &
 a,c // p,r1 & a,c // p,r2 & b,c // q,r1 & b,c // q,r2 by A1,Def1,Th12,Th30;
 then not p,q // p,r1 & p,r1 // p,r2 & q,r1 // q,r2 by Def1;
 hence thesis by Th32; end;
 hence thesis by A2; end;

 theorem
   a=b or c =d or (a=c & b=d) or (a=d & b=c) implies a,b // c,d
 by Def1,Th12,Th14;

theorem
  a=b or a=c or b=c implies a,b // a,c by Def1,Th12,Th14;

::
::          BASIC FACTS ABOUT  COLLINEARITY RELATION
::

definition let SAS,a,b,c;
 pred a,b,c is_collinear means
 :Def2: a,b // a,c;
end;

canceled;

theorem
Th37: a1,a2,a3 is_collinear implies a1,a3,a2 is_collinear & a2,a1,a3
is_collinear & a2,a3,a1 is_collinear & a3,a1,a2 is_collinear & a3,a2,a1
is_collinear
proof assume a1,a2,a3 is_collinear; then a1,a2 // a1,a3 by Def2;
then a1,a3 // a1,a2 & a2,a1 // a2,a3 & a2,a3 // a2,a1 & a3,a2 // a3,a1 &
a3,a1 // a3,a2
by Th18; hence thesis by Def2; end;

canceled;

theorem
Th39: not a,b,c is_collinear & a,b // p,q & a,c // p,r & p<>q & p<>r
implies not
p,q,r is_collinear
proof assume not a,b,c is_collinear & a,b // p,q & a,c // p,r & p<>q & p<>r;
then not a,b // a,c & a,b // p,q & a,c // p,r & p<>q & p<>r by Def2; then not
p,q // p,r by Th29; hence thesis by Def2; end;

theorem
Th40: a=b or b=c or c =a implies a,b,c is_collinear
proof assume a=b or b=c or c =a; then a,b // a,c by Def1,Th12,Th14; hence
 thesis by Def2;
end;

theorem
Th41: p<>q implies ex r st not p,q,r is_collinear
proof assume p<>q; then consider r such that A1: not p,q // p,r by Th26;
take r; thus not p,q,r is_collinear by A1,Def2; thus thesis; end;

theorem Th42:
a,b,c is_collinear & a,b,d is_collinear implies a,b // c,d
proof assume A1: a,b,c is_collinear & a,b,d is_collinear;
    now assume a<>b & a<>c; then a<>b & a<>c & a,b // a,c &
a,b // a,d by A1,Def2; then a<>c & a,b // a,c & a,c // a,d by Def1; then a<>c
&
a,b // a,c & a,c // c,d by Th18; hence thesis by Th20; end;
hence thesis by A1,Def2,Th14;
end;

theorem
Th43: not a,b,c is_collinear & a,b // c,d implies not a,b,d is_collinear
proof assume A1: not a,b,c is_collinear & a,b // c,d;
   now assume A2:c <>d & a,b,d is_collinear;
A3: not a,b // a,c & a,b // c,d & a,c // c,a by A1,Def1,Def2;
then A4: c <>a & a<>b & a,b // d,c by Def1,Th14,Th17; a,b // a,d by A2,Def2;
then a,b // d,a by Th17;
then not c,d // c,a & d,c // d,a by A2,A3,A4,Def1,Th29; hence contradiction
 by Th18; end; hence thesis by A1; end;

theorem
Th44: not a,b,c is_collinear & a,b // c,d & c <>d & c,d,x is_collinear
implies not a,b,x is_collinear
proof assume A1: not a,b,c is_collinear & a,b // c,d & c <>d & c,d,x
is_collinear;
then c <>d & a,b // c,d & c,d // c,x by Def2;
then not a,b,c is_collinear & a,b // c,x by A1,Th20;hence thesis by Th43; end
;

theorem
   not o,a,b is_collinear & o,a,x is_collinear & o,b,x is_collinear implies
o=x
proof assume not o,a,b is_collinear & o,a,x is_collinear & o,b,x is_collinear;
then not a,b,o is_collinear & o,a,x is_collinear & b,o,x is_collinear by Th37
; then not a,b // a,o & o,a // o,x & b,o // b,x by Def2; then not a,b // a,o
&
a,o // a,x & b,o // b,x by Th28; hence thesis by Th32; end;

theorem
   o<>a & o<>b & o,a,b is_collinear & o,a,a' is_collinear & o,b,b'
is_collinear implies a,b // a',b'
proof assume A1: o<>a & o<>b & o,a,b is_collinear & o,a,a' is_collinear & o,b,
b'
is_collinear; A2: now assume o=a'; then a'<>b & a',a // a',b & a',b // a',b'
by A1,Def2; then a'<>b & a,b // a',b & a',b // a',b' by Th18; hence thesis
by Th20
; end;
  now assume o<>a'; then o<>a' & o<>b & o<>a & o,a // o,b & o,a // o,a' &
o,b // o,b' by A1,Def2; then o<>a' & o<>b & o,b // a,b & o,b // o,a' & o,b //
o,b' by Def1,Th18; then o<>a' & o<>b & o,b // a,b & o,b // o,a' & o,a' // o,b'
by Def1;
then o<>a' & a,b // o,a' & o,a' // a',b' by Def1,Th18;
hence thesis by Th20; end;
hence thesis by A2; end;

canceled;

theorem
   not a,b // c,d & a,b,p1 is_collinear & a,b,p2 is_collinear & c,d,p1
is_collinear & c,d,p2 is_collinear implies p1=p2
proof assume not a,b // c,d & a,b,p1 is_collinear & a,b,p2 is_collinear &
c,d,p1
is_collinear & c,d,p2 is_collinear; then not a,b // c,d & a,b // p1,p2 &
c,d // p1,p2 by Th42; then not a,b // c,d & p1,p2 // a,b & p1,p2 // c,d by Th17
; hence thesis by Def1; end;

theorem
Th49: a<>b & a,b,c is_collinear & a,b // c,d implies a,c // b,d
proof assume A1: a<>b & a,b,c is_collinear & a,b // c,d;
   now assume b<>c; then b<>a & b<>c
& a,b // a,c & a,b // c,d by A1,Def2; then b<>a & b<>c & b,c // a,c &
a,b // c,b &
a,b // c,d by Th18; then b<>c & b,c // a,c & c,b // c,d by Def1; then b<>c &
b,c // a,c & b,c // b,d by Th18; hence thesis by Def1; end; hence thesis by A1;
end;

theorem
Th50: a<>b & a,b,c is_collinear & a,b // c,d implies c,b // c,d
proof assume A1: a<>b & a,b,c is_collinear & a,b // c,d;
   now assume a<>c; then a<>c &
a<>b & a,b // a,c & a,b // c,d by A1,Def2; then a<>c & a,c // c,b &
a,c // c,d by Def1,Th18; hence thesis by Def1; end; hence thesis by A1; end;

theorem
Th51: not o,a,c is_collinear & o,a,b is_collinear & o,c,d1 is_collinear &
o,c,d2 is_collinear & a,c // b,d1 & a,c // b,d1 & a,c // b,d2 implies d1=d2
proof assume not o,a,c is_collinear & o,a,b is_collinear & o,c,d1 is_collinear
& o,c,d2 is_collinear & a,c // b,d1 & a,c // b,d1 & a,c // b,d2; then not
o,a // o,c & o,a // o,b & o,c // o,d1 & o,c // o,d2 & a,c // b,d1 & a,c //
b,d2 by Def2; hence thesis by Th33; end;

theorem
   a<>b & a,b,c is_collinear & a,b,d is_collinear implies a,c,d is_collinear
proof assume a<>b & a,b,c is_collinear & a,b,d is_collinear; then a<>b &
a,b // a,c & a,b // a,d by Def2; then a,c // a,d by Def1; hence thesis by Def2
; end;

::
::                              PARALLELOGRAM
::

definition let SAS,a,b,c,d;
 pred parallelogram a,b,c,d means
 :Def3: not a,b,c is_collinear & a,b // c,d & a,c // b,d;
end;

canceled;

theorem
Th54: parallelogram a,b,c,d implies a<>b & a<>c & c <>b & a<>d & b<>d & c <>d
proof assume A1: parallelogram a,b,c,d; then not a,b,c is_collinear by Def3;
hence a<>b & a<>c & c <>b by Th40;
assume A2: not thesis;
A3:now assume a=d;
then not a,b,c is_collinear & a,b // c,a by A1,Def3
; then not a,b,c is_collinear & a,b // a,c by Th17; hence contradiction by Def2
; end;
A4:now assume b=d;
then not a,b,c is_collinear & a,b // c,b by A1,Def3
; then not a,b,c is_collinear & b,a // b,c by Th17; then not a,b,c
is_collinear & b,a,c is_collinear by Def2; hence
  contradiction by Th37; end;
  now assume c =d;
then not a,b,c is_collinear & a,c // b,c by A1,Def3
; then not a,b,c is_collinear &
c,a // c,b by Th17; then not a,b,c is_collinear & c,a,b is_collinear by Def2;
hence contradiction by Th37; end;
hence contradiction by A2,A3,A4; end;

theorem
Th55: parallelogram a,b,c,d implies not a,b,c is_collinear & not b,a,d
is_collinear & not c,d,a is_collinear & not d,c,b is_collinear
proof assume A1: parallelogram a,b,c,d; hence not a,b,c is_collinear by Def3;
  not a,b,c
is_collinear & a,b // b,a & a,c // b,d & b<>a & b<>d by A1,Def1,Def3,Th54
; hence not b,a,d
is_collinear by Th39;
  not a,b,c is_collinear & a,b // c,d & a,c // c,a & c <>d & c <>a by A1,Def1,
Def3,Th54
; hence not c,d,a is_collinear by Th39; not a,b,c is_collinear & a,b // c,d
&
a,c // b,d & c <>d & d<>b by A1,Def3,Th54
; then not a,b,c is_collinear & a,b // d,c &
a,c // d,b & c <>d & d<>b by Th17; hence thesis by Th39; end;

theorem
Th56: parallelogram a1,a2,a3,a4 implies not a1,a2,a3 is_collinear &
not a1,a3,a2 is_collinear & not a1,a2,a4 is_collinear &
not a1,a4,a2 is_collinear & not a1,a3,a4 is_collinear &
not a1,a4,a3 is_collinear & not a2,a1,a3 is_collinear &
not a2,a3,a1 is_collinear & not a2,a1,a4 is_collinear &
not a2,a4,a1 is_collinear & not a2,a3,a4 is_collinear &
not a2,a4,a3 is_collinear & not a3,a1,a2 is_collinear &
not a3,a2,a1 is_collinear & not a3,a1,a4 is_collinear &
not a3,a4,a1 is_collinear & not a3,a2,a4 is_collinear &
not a3,a4,a2 is_collinear & not a4,a1,a2 is_collinear &
not a4,a2,a1 is_collinear & not a4,a1,a3 is_collinear &
not a4,a3,a1 is_collinear & not a4,a2,a3 is_collinear &
not a4,a3,a2 is_collinear
proof assume parallelogram a1,a2,a3,a4; then not a1,a2,a3 is_collinear &
not a2,a1,a4 is_collinear & not a3,a4,a1 is_collinear & not a4,a3,a2
is_collinear by Th55; hence thesis by Th37; end;

theorem
Th57: parallelogram a,b,c,d implies not a,b,x is_collinear or not c,d,x
is_collinear
proof assume parallelogram a,b,c,d; then not a,b,c is_collinear & a,b // c,d
&
c <>d by Def3,Th54; hence thesis by Th44; end;

theorem
   parallelogram a,b,c,d implies parallelogram a,c,b,d
proof assume parallelogram a,b,c,d; then not a,c,b is_collinear & a,b // c,d
&
 a,c // b,d by Def3,Th56; hence thesis by Def3; end;

 theorem
    parallelogram a,b,c,d implies parallelogram c,d,a,b
 proof assume parallelogram a,b,c,d; then not c,d,a is_collinear & a,b // c,d
&
 a,c // b,d by Def3,Th56; then not c,d,a is_collinear & c,d // a,b &
 c,a // d,b by Th17; hence thesis by Def3; end;

 theorem
    parallelogram a,b,c,d implies parallelogram b,a,d,c
 proof assume parallelogram a,b,c,d; then not b,a,d is_collinear & a,b // c,d
&
 a,c // b,d by Def3,Th56; then not b,a,d is_collinear & b,a // d,c & b,d //
 a,c by Th17; hence thesis by Def3; end;

 theorem
 Th61: parallelogram a,b,c,d implies parallelogram a,c,b,d & parallelogram
 c,d,a,b & parallelogram b,a,d,c & parallelogram c,a,d,b & parallelogram
 d,b,c,a & parallelogram b,d,a,c
 proof assume A1: parallelogram a,b,c,d; then not a,b,c is_collinear &
 a,b // c,d & a,c // b,d by Def3;
 then not a,c,b is_collinear & a,c // b,d & a,b // c,d &
 not c,d,a is_collinear & c,d // a,b & c,a // d,b &
 not b,a,d is_collinear & b,a // d,c & b,d // a,c &
 not c,a,d is_collinear & c,a // d,b & c,d // a,b &
 not d,b,c is_collinear & d,b // c,a & d,c // b,a &
 not b,d,a is_collinear & b,d // a,c & b,a // d,c by A1,Th17,Th56;
 hence thesis by Def3; end;

theorem
Th62: not a,b,c is_collinear implies ex d st parallelogram a,b,c,d
proof assume A1: not a,b,c is_collinear; consider d such that A2:
a,b // c,d & a,c // b,d by Def1; take d; thus thesis by A1,A2,Def3; end;

theorem
Th63: parallelogram a,b,c,d1 & parallelogram a,b,c,d2 implies d1=d2
proof assume parallelogram a,b,c,d1 & parallelogram a,b,c,d2;
then not b,c,a is_collinear & a,b // c,d1 & a,c // b,d1 & a,b // c,d2 & a,c //
b,d2
by Def3,Th56; then not b,c // b,a & b,c // c,b &
b,a // c,d1 & b,a // c,d2 & c,a // b,d1 & c,a // b,d2 by Def1,Def2,Th17;
hence thesis by Th33; end;

theorem
Th64: parallelogram a,b,c,d implies not a,d // b,c
proof assume parallelogram a,b,c,d; then not a,b,c is_collinear & a,b // c,d
& a,c // b,d by Def3; then not a,b // a,c & a,b // c,d & a,c // b,d by Def2;
hence thesis by Def1; end;

theorem
Th65: parallelogram a,b,c,d implies not parallelogram a,b,d,c
proof assume A1: parallelogram a,b,c,d; assume not thesis;
then A2: not a,b,d is_collinear & a,b // d,c & a,d // b,c by Def3;
  not a,b,c is_collinear & a,b // c,d & a,c // b,d by A1,Def3;
then not a,b // a,c & a,b // c,d & a,c // b,d by Def2;hence contradiction by A2
,Def1
; end;

theorem
Th66:a<>b implies ex c st a,b,c is_collinear & c <>a & c <>b
proof assume a<>b; then consider p such that A1: not a,b,p is_collinear by Th41
; consider q such that A2: parallelogram a,b,p,q by A1,Th62;
   not p,q,b is_collinear & parallelogram a,b,p,q by A2,Th56; then consider
c such that A3: parallelogram p,q,b,c by Th62; take c; A4: p<>q & a,b // p,q &
p,q // b,c & p,b // q,c by A2,A3,Def3,Th54; A5: not b,c,p is_collinear by A3,
Th55;
   a,b // b,c by A4,Th20;
 then b,a // b,c & not a,q // b,p & c,q // b,p by A2,A4,Th17,Th64;
then b,a,c is_collinear & a<>c by Def2; hence thesis by A5,Th37,Th40; end;

theorem
Th67: parallelogram a,a',b,b' & parallelogram a,a',c,c' implies b,c // b',c'
proof assume parallelogram a,a',b,b' & parallelogram a,a',c,c';
then not a,a',b is_collinear & not a,a',c is_collinear & a,a' // b,b' &
a,b // a',b' &
a,a' // c,c' & a,c // a',c' by Def3; then not a,a' // a,b & not a,a' // a,c &
a,a' // b,b' & a,b // a',b' & a,a' // c,c' & a,c // a',c' by Def2;
hence thesis by Def1; end;

theorem
Th68: not b,b',c is_collinear & parallelogram a,a',b,b' & parallelogram
a,a',c,c' implies parallelogram b,b',c,c'
proof assume not b,b',c is_collinear & parallelogram a,a',b,b' &
parallelogram a,a',c,c'; then not b,b',c is_collinear & a<>a' & a,a' // b,b' &
a,a' // c,c' & b,c // b',c' by Def3,Th54,Th67; then not b,b',c is_collinear &
b,b' // c,c' & b,c // b',c' by Def1; hence thesis by Def3; end;

theorem
Th69: a,b,c is_collinear & b<>c & parallelogram a,a',b,b' & parallelogram
a,a',c,c' implies parallelogram b,b',c,c'
proof assume a,b,c is_collinear & b<>c & parallelogram a,a',b,b' &
parallelogram a,a',c,c'; then a,b // a,c & not a,a',b is_collinear &
a,a' // b,b'
& b<>b' & b<>c & parallelogram a,a',b,b' & parallelogram a,a',c,c' by Def2,Def3
,Th54; then not a,a',b is_collinear & a,a' // b,b' & a,b // b,c & b<>b' & b<>c
&
parallelogram a,a',b,b' & parallelogram a,a',c,c' by Th18; then not b,b',c
is_collinear & parallelogram a,a',b,b' & parallelogram a,a',c,c' by Th39; hence
  thesis by Th68; end;

theorem
Th70: parallelogram a,a',b,b' & parallelogram a,a',c,c' & parallelogram
b,b',d,d' implies c,d // c',d'
proof assume A1: parallelogram a,a',b,b' & parallelogram a,a',c,c' &
parallelogram b,b',d,d'; A2: now assume not b,b',c is_collinear;
then parallelogram b,b',c,c' & parallelogram b,b',d,d' by A1,Th68; hence
 thesis by Th67; end; A3: now assume not a,a',d is_collinear; then not a,a',d
is_collinear
& parallelogram b,b',a,a' & parallelogram b,b',d,d' & parallelogram a,a',c,c'
by A1,Th61; then parallelogram a,a',d,d' & parallelogram a,a',c,c' by Th68;
hence thesis by Th67; end;
      now assume A4: b,b',c is_collinear & a,a',d is_collinear;
           a<>b by A1,Th54;
        then consider x such that A5: a,b,x is_collinear & x<>a & x<>b by Th66;
        A6: a,b // a,x by A5,Def2;
        A7: not a,a',b is_collinear by A1,Th56;
        A8: a,a' // a,a' by Th12;
           a<>a' by A1,Th54;
        then not a,a',x is_collinear by A5,A6,A7,A8,Th39;
        then consider y such that A9: parallelogram a,a',x,y by Th62;
        A10: parallelogram b,b',x,y by A1,A5,A9,Th69;
        then not x,y,c is_collinear & not x,y,d is_collinear by A4,A9,Th57;
        then parallelogram x,y,c,c' & parallelogram x,y,d,d' by A1,A9,A10,Th68
;
        hence thesis by Th67;
       end;
   hence thesis by A2,A3;
 end;

Lm1: a<>b implies ex c,d st parallelogram a,b,c,d
 proof assume a<>b; then consider c such that A1: not a,b,c is_collinear by
Th41;
    ex d st parallelogram a,b,c,d by A1,Th62;
  hence thesis;
 end;

theorem
   a<>d implies ex b,c st parallelogram a,b,c,d
 proof assume a<>d; then consider b such that A1: not a,d,b is_collinear by
Th41;
     not b,a,d is_collinear by A1,Th37;
  then consider c such that A2: parallelogram b,a,d,c by Th62;
     parallelogram a,b,c,d by A2,Th61;
  hence thesis;
 end;

::
::                                 CONGRUENCE
::

definition let SAS,a,b,r,s;
 pred congr a,b,r,s means
 :Def4: (a=b & r =s) or (ex p,q st parallelogram p,q,a,b &
 parallelogram p,q,r,s);
end;

canceled;

theorem
Th73: congr a,a,b,c implies b=c
 proof assume congr a,a,b,c;
  then (a=a & b=c) or (ex p,q st parallelogram p,q,a,a & parallelogram
   p,q,b,c) by Def4;
  hence thesis by Th54;
 end;

theorem
Th74: congr a,b,c,c implies a=b
 proof assume congr a,b,c,c;
  then (a=b & c =c) or (ex p,q st parallelogram p,q,a,b & parallelogram
   p,q,c,c) by Def4;
  hence thesis by Th54;
 end;

theorem
Th75: congr a,b,b,a implies a=b
 proof assume A1: congr a,b,b,a;
    now assume a<>b;
   then ex p,q st parallelogram p,q,a,b & parallelogram p,q,b,a by A1,Def4;
   hence contradiction by Th65;
  end;
  hence thesis;
 end;

theorem
Th76: congr a,b,c,d implies a,b // c,d
 proof assume A1: congr a,b,c,d;
     now assume a<>b;
       then consider p,q such that A2: parallelogram p,q,a,b & parallelogram p,
q,c,d
        by A1,Def4;
         p<>q & p,q // a,b & p,q // c,d by A2,Def3,Th54;
       hence thesis by Def1;
      end;
  hence thesis by Th14;
 end;

theorem
Th77: congr a,b,c,d implies a,c // b,d
 proof assume A1: congr a,b,c,d;
  A2: now assume a=b;
       then a=b & c =d by A1,Th73;
       hence thesis by Th12;
      end;
     now assume a<>b;
       then ex p,q st parallelogram p,q,a,b & parallelogram p,q,c,d
        by A1,Def4;
       hence thesis by Th67;
      end;
  hence thesis by A2;
 end;

theorem
Th78: congr a,b,c,d & not a,b,c is_collinear implies parallelogram a,b,c,d
 proof assume congr a,b,c,d & not a,b,c is_collinear;
  then not a,b,c is_collinear & a,b // c,d & a,c // b,d by Th76,Th77;
  hence thesis by Def3;
 end;

theorem
Th79: parallelogram a,b,c,d implies congr a,b,c,d
 proof assume A1: parallelogram a,b,c,d;
  then a<>c by Th54;
  then consider p such that A2: a,c,p is_collinear & a<>p & c <>p by Th66;
    not a,c,b is_collinear & a,c // a,p & a,b // a,b & a<>p & a<>b
                                     by A1,A2,Def2,Th12,Th54,Th56;
  then not a,p,b is_collinear by Th39;
  then consider q such that A3: parallelogram a,p,b,q by Th62;
     parallelogram a,b,p,q by A3,Th61;
  then parallelogram c,d,p,q by A1,A2,Th69;
  then parallelogram p,q,a,b & parallelogram p,q,c,d by A3,Th61;
  hence thesis by Def4;
 end;

theorem
Th80: congr a,b,c,d & a,b,c is_collinear & parallelogram r,s,a,b implies
 parallelogram r,s,c,d
 proof assume A1: congr a,b,c,d & a,b,c is_collinear & parallelogram r,s,a,b;

     now assume A2: a<>b;
       then consider p,q such that A3: parallelogram p,q,a,b & parallelogram p,
q,c,d
        by A1,Def4;
       A4: not r,s,c is_collinear by A1,Th57;
         a<>b & r,s // a,b & a,b // c,d by A1,A2,Def3,Th76;
       then A5: r,s // c,d by Th20;
         parallelogram a,b,r,s & parallelogram a,b,p,q & parallelogram p,q,c,d
       by A1,A3,Th61;
       then r,c // s,d by Th70;
       hence thesis by A4,A5,Def3;
      end;
  hence thesis by A1,Th54;
 end;

theorem
Th81: congr a,b,c,x & congr a,b,c,y implies x=y
 proof assume A1: congr a,b,c,x & congr a,b,c,y;
  A2: now assume a=b;
       then c =x & c =y by A1,Th73;
       hence thesis;
      end;
  A3: now assume A4: a<>b & a,b,c is_collinear;
       then consider p,q such that A5: parallelogram a,b,p,q by Lm1;
         parallelogram p,q,a,b by A5,Th61; then parallelogram p,q,c,x &
        parallelogram p,q,c,y by A1,A4,Th80;
       hence thesis by Th63;
      end;
     now assume a<>b & not a,b,c is_collinear;
       then parallelogram a,b,c,x & parallelogram a,b,c,y by A1,Th78;
       hence thesis by Th63;
      end;
  hence thesis by A2,A3;
 end;

theorem
Th82: ex d st congr a,b,c,d
 proof
  A1:now assume a=b; then congr a,b,c,c by Def4;
      hence thesis;
     end;
  A2: now assume A3: a<>b & a,b,c is_collinear;
       then consider p,q such that A4: parallelogram a,b,p,q by Lm1;
       A5: parallelogram p,q,a,b & not p,q,c is_collinear by A3,A4,Th57,Th61;
       then consider d such that A6: parallelogram p,q,c,d by Th62;
        congr a,b,c,d by A5,A6,Def4;
       hence thesis;
      end;
     now assume a<>b & not a,b,c is_collinear;
       then consider d such that A7: parallelogram a,b,c,d by Th62;
        congr a,b,c,d by A7,Th79;
       hence thesis;
      end;
  hence thesis by A1,A2;
 end;

canceled;

theorem
Th84: congr a,b,a,b
 proof
    now assume a<>b;
   then consider p,q such that A1: parallelogram a,b,p,q by Lm1;
     parallelogram p,q,a,b & parallelogram p,q,a,b by A1,Th61;
   hence thesis by Def4;
  end;
  hence thesis by Def4;
 end;

theorem
Th85: congr r,s,a,b & congr r,s,c,d implies congr a,b,c,d
 proof assume A1: congr r,s,a,b & congr r,s,c,d;
  A2: now assume r=s;
       then a=b & c =d by A1,Th73;
       hence thesis by Def4;
      end;
  A3: now assume A4: r<>s & r,s,a is_collinear;
       then consider p,q such that A5: parallelogram p,q,r,s & parallelogram
        p,q,c,d by A1,Def4;
         parallelogram p,q,a,b by A1,A4,A5,Th80;
       hence thesis by A5,Def4;
      end;
  A6: now assume A7: r<>s & r,s,c is_collinear;
       then consider p,q such that A8: parallelogram p,q,r,s & parallelogram p,
q,a,b
        by A1,Def4;
         parallelogram p,q,c,d by A1,A7,A8,Th80;
       hence thesis by A8,Def4;
      end;
     now assume r<>s & not r,s,a is_collinear & not r,s,c is_collinear;
       then parallelogram r,s,a,b & parallelogram r,s,c,d by A1,Th78;
       hence thesis by Def4;
      end;
  hence thesis by A2,A3,A6;
 end;

theorem
Th86: congr a,b,c,d implies congr c,d,a,b
 proof assume congr a,b,c,d;
  then congr a,b,c,d & congr a,b,a,b by Th84;
  hence thesis by Th85;
 end;

theorem
Th87: congr a,b,c,d implies congr b,a,d,c
 proof assume A1: congr a,b,c,d;
  A2: now assume a=b;
       then a=b & c =d by A1,Th73;
       hence thesis by Def4;
      end;
     now assume a<>b;
       then consider p,q such that A3: parallelogram p,q,a,b & parallelogram p,
q,c,d
        by A1,Def4;
         parallelogram q,p,b,a & parallelogram q,p,d,c by A3,Th61;
       hence thesis by Def4;
      end;
  hence thesis by A2;
 end;

theorem
Th88: congr a,b,c,d implies congr a,c,b,d
 proof assume A1: congr a,b,c,d;
  A2: now assume a=b; then a=b & c =d by A1,Th73;
       hence thesis by Th84;
      end;
  A3: now assume a=c;
       then a=c & congr a,b,a,d & congr a,b,a,b by A1,Th84;
       then a=c & b=d by Th81;
       hence thesis by Def4;
      end;
  A4: now assume A5: a<>b & a<>c & a,b,c is_collinear;
       then consider p,q such that A6: parallelogram p,q,a,b & parallelogram p,
q,c,d
        by A1,Def4;
         not a,b,p is_collinear & a,b // a,c & a,p // a,p & a<>c & a<>p
                        by A5,A6,Def2,Th12,Th54,Th56;
       then not a,c,p is_collinear by Th39;
       then consider r such that A7: parallelogram a,c,p,r by Th62;
       A8: parallelogram p,r,a,c by A7,Th61;
         a,c,b is_collinear by A5,Th37; then A9: not p,r,b is_collinear by A7,
Th57;
         p<>q & p,q // a,b & p,q // c,d by A6,Def3,Th54;
       then A10: a,b // c,d by Def1;
       then a,c // b,d & a,c // p,r & a<>c by A5,A7,Def3,Th49;
       then A11: p,r // b,d by Def1; p,q // a,b by A6,Def3;
       then a<>b & a,b // a,c & a,b // p,q by A5,Def2,Th17;
       then a<>c & a,c // p,q & a,c // p,r by A5,A7,Def1,Def3;
       then p,q // p,r by Def1;
       then A12: r,q // r,p by Th18;
         c,b // c,d by A5,A10,Th50; then A13: b,c // b,d by Th18;
         p,a // r,c & p,a // q,b & p<>a by A6,A8,Def3,Th54;
       then A14: r,c // q,b by Def1;
         p,c // q,d by A6,Def3;
       then q,d // p,c by Th17;
       then p,b // r,d by A12,A13,A14,Def1;
       then parallelogram p,r,a,c & parallelogram p,r,b,d by A7,A9,A11,Def3,
Th61;
       hence thesis by Def4;
      end;
     now assume a<>b & a<>c & not a,b,c is_collinear;
       then parallelogram a,b,c,d by A1,Th78;
       then parallelogram a,c,b,d by Th61;
       hence thesis by Th79;
      end;
  hence thesis by A2,A3,A4;
 end;

theorem
Th89: congr a,b,c,d implies congr c,d,a,b & congr b,a,d,c & congr a,c,b,d &
                         congr d,c,b,a & congr b,d,a,c & congr c,a,d,b &
                         congr d,b,c,a
 proof assume A1: congr a,b,c,d;
  then congr c,d,a,b & congr b,a,d,c & congr a,c,b,d
                            by Th86,Th87,Th88;
  then congr d,c,b,a & congr b,d,a,c & congr c,a,d,b by Th87,Th88;
  hence thesis by A1,Th86;
 end;

theorem
Th90: congr a,b,p,q & congr b,c,q,s implies congr a,c,p,s
 proof assume congr a,b,p,q & congr b,c,q,s; then congr b,q,a,p & congr b,q,c
,s
  by Th89;
  then congr a,p,c,s by Th85;
  hence thesis by Th88;
 end;

theorem
Th91: congr b,a,p,q & congr c,a,p,r implies congr b,c,r,q
 proof assume A1: congr b,a,p,q & congr c,a,p,r;
  consider s such that A2: congr p,q,r,s by Th82;
   congr p,q,b,a & congr p,q,r,s & congr r,p,s,q & congr r,p,a,c by A1,A2,Th89;
  then congr b,a,r,s & congr a,c,s,q by Th85;
  hence thesis by Th90;
 end;

theorem
   congr a,o,o,p & congr b,o,o,q implies congr a,b,q,p by Th91;

theorem
Th93: congr b,a,p,q & congr c,a,p,r implies b,c // q,r
 proof assume congr b,a,p,q & congr c,a,p,r;
  then congr b,c,r,q by Th91;
  then b,c // r,q by Th76;
  hence thesis by Th17;
 end;

theorem
  congr a,o,o,p & congr b,o,o,q implies a,b // p,q by Th93;

::
::                          A VECTOR' GROUP
::

definition let SAS,a,b,o;
func sum(a,b,o) -> Element of SAS means
 :Def5: congr o,a,b,it;
 correctness by Th81,Th82;
end;

definition let SAS,a,o;
func opposite(a,o) -> Element of SAS means
 :Def6: sum(a,it,o) = o;
 existence
  proof consider b being Element of SAS such that
    A1: congr a,o,o,b by Th82; A2: congr o,a,b,o by A1,Th87;
    take b; thus thesis by A2,Def5;
  end;
 uniqueness
  proof let b1,b2 be Element of SAS such that
   A3: sum(a,b1,o) = o and A4: sum(a,b2,o) = o;
    congr o,a,b1,o & congr o,a,b2,o by A3,A4,Def5;
  then congr a,o,o,b1 & congr a,o,o,b2 by Th87;
   hence thesis by Th81;
  end;
end;

definition let SAS,a,b,o;
func diff(a,b,o) -> Element of SAS equals
 :Def7: sum(a,opposite(b,o),o);
 correctness;
end;

canceled 4;

theorem
Th99: sum(a,o,o)=a
 proof congr o,a,o,sum(a,o,o) & congr o,a,o,a by Def5,Th84;
  hence thesis by Th81;
 end;

theorem
   ex x st sum(a,x,o)=o
 proof consider x such that A1: congr a,o,o,x by Th82;
   congr o,a,x,sum(a,x,o) & congr o,a,x,o by A1,Def5,Th89;
  then sum(a,x,o)=o by Th81; hence thesis;
 end;

theorem
   sum(sum(a,b,o),c,o)=sum(a,sum(b,c,o),o)
 proof congr o,a,b,sum(a,b,o) & congr o,sum(a,b,o),c,sum(sum(a,b,o),c,o) &
 congr o,a,sum(b,c,o),sum(a,sum(b,c,o),o) & congr o,b,c,sum(b,c,o) by Def5
;
 then congr b,sum(a,b,o),sum(b,c,o),sum(a,sum(b,c,o),o) & congr b,o,sum(b,c,o)
,c &
 congr o,sum(a,b,o),c,sum(sum(a,b,o),c,o) by Th85,Th89;
 then congr b,sum(a,b,o),sum(b,c,o),sum(a,sum(b,c,o),o) &
 congr b,sum(a,b,o),sum(b,c,o),sum(sum(a,b,o),c,o) by Th90; hence thesis by
Th81;
 end;
theorem
Th102: sum(a,b,o)=sum(b,a,o)
 proof congr o,a,b,sum(a,b,o) & congr o,b,a,sum(b,a,o) by Def5;
 then congr o,a,b,sum(a,b,o) & congr o,a,b,sum(b,a,o) by Th89;hence thesis
by Th81;
 end;

theorem
   sum(a,a,o)=o implies a=o
 proof assume sum(a,a,o)=o; then congr o,a,a,o by Def5;
  hence thesis by Th75;
 end;

theorem
Th104: sum(a,x,o)=sum(a,y,o) implies x=y
 proof assume sum(a,x,o)=sum(a,y,o);
  then sum(a,x,o)=sum(a,y,o) & congr o,a,x,sum(a,x,o) & congr o,a,y,sum(a,y,o)
by Def5;
 then congr a,o,sum(a,x,o),x & congr a,o,sum(a,x,o),y by Th89; hence thesis
by Th81;
 end;

canceled;

theorem
Th106: congr a,o,o,opposite(a,o)
 proof
    sum(a,opposite(a,o),o)=o & congr o,a,opposite(a,o),sum(a,opposite(a,o),o)
by Def5,Def6;hence thesis by Th89;
 end;

theorem
Th107: opposite(a,o)=opposite(b,o) implies a=b
 proof assume opposite(a,o)=opposite(b,o);
 then congr a,o,o,opposite(a,o) & congr b,o,o,opposite(b,o) & opposite(a,o)=
 opposite(b,o) by Th106; then congr opposite(a,o),o,o,a &
 congr opposite(a,o),o,o,b by Th89; hence thesis by Th81;
 end;

theorem
   a,b // opposite(a,o),opposite(b,o)
 proof sum(a,opposite(a,o),o)=o & sum(b,opposite(b,o),o)=o by Def6;
 then congr o,a,opposite(a,o),o & congr o,b,opposite(b,o),o by Def5;
 then congr a,o,o,opposite(a,o) & congr b,o,o,opposite(b,o) by Th89; hence
 thesis by Th93;
 end;

theorem
   opposite(o,o)=o
 proof sum(o,opposite(o,o),o)=o by Def6; then sum(opposite(o,o),o,o)=o by Th102
;
  hence thesis by Th99;
 end;

theorem
Th110: p,q // sum(p,r,o),sum(q,r,o)
 proof congr o,p,r,sum(p,r,o) & congr o,q,r,sum(q,r,o) by Def5;
 then congr p,o,sum(p,r,o),r & congr o,q,r,sum(q,r,o) by Th89;
 then congr p,q,sum(p,r,o),sum(q,r,o) by Th90; hence thesis by Th76;
 end;

theorem
   p,q // r,s implies p,q // sum(p,r,o),sum(q,s,o)
 proof assume A1: p,q // r,s;
     now assume A2: p<>q & r<>s;
   consider t such that A3: congr o,q,r,t by Th82;
     congr o,q,r,t & congr o,q,s,sum(q,s,o) by A3,Def5;
   then congr r,t,s,sum(q,s,o) by Th85;
   then congr r,s,t,sum(q,s,o) by Th89;
   then t<>sum(q,s,o) & r,s // t,sum(q,s,o) by A2,Th74,Th76;
   then A4: t<>sum(q,s,o) & p,q // t,sum(q,s,o) by A1,A2,Th20;
     congr o,p,r,sum(p,r,o) by Def5;
   then congr p,o,sum(p,r,o),r & congr o,q,r,t by A3,Th89;
   then congr p,q,sum(p,r,o),t by Th90; then p,q // sum(p,r,o),t by Th76;
   then p,q // t,sum(p,r,o) by Th17;
   then t,sum(q,s,o) // t,sum(p,r,o) by A2,A4,Def1;
   then t,sum(q,s,o) // sum(p,r,o),sum(q,s,o) by Th18;
   hence thesis by A4,Th20;end;
  hence thesis by Th14,Th110;
 end;

canceled;

theorem
Th113: diff(a,b,o)=o iff a=b
 proof
  A1: diff(a,b,o)=o implies a=b
   proof assume diff(a,b,o)=o;
    then sum(a,opposite(b,o),o)=o & sum(a,opposite(a,o),o)=o by Def6,Def7;
then opposite(a,o)=
    opposite(b,o) by Th104;
    hence thesis by Th107;
   end;
     a=b implies diff(a,b,o)=o
   proof assume a=b;
    then diff(a,b,o)=sum(a,opposite(a,o),o) by Def7; hence thesis by Def6;
   end;
  hence thesis by A1;
 end;

theorem
Th114: o,diff(b,a,o) // a,b
 proof
    diff(b,a,o)=sum(b,opposite(a,o),o) &
   congr o,b,opposite(a,o),sum(b,opposite(a,o),o) by Def5,Def7;
  then congr o,opposite(a,o),b,diff(b,a,o) & congr a,o,o,opposite(a,o) by Th89,
Th106
;
  then congr o,opposite(a,o),b,diff(b,a,o) & congr o,opposite(a,o),a,o by Th89
;
  then congr a,o,b,diff(b,a,o) by Th85; then congr o,diff(b,a,o),a,b by Th89;
  hence thesis by Th76;
 end;

theorem
   o,diff(b,a,o),diff(d,c,o) is_collinear iff a,b // c,d
 proof
  A1: o,diff(b,a,o),diff(d,c,o) is_collinear implies a,b // c,d
   proof assume A2: o,diff(b,a,o),diff(d,c,o) is_collinear;
  A3: now assume o=diff(b,a,o) or o=diff(d,c,o); then a=b or c =d by Th113;
    hence thesis by Def1,Th14; end;
     now assume o<>diff(b,a,o) & o<>diff(d,c,o);
    then o<>diff(b,a,o) & o<>diff(d,c,o) & o,diff(b,a,o) // o,diff(d,c,o) &
     o,diff(b,a,o) // a,b & o,diff(d,c,o) // c,d & o<>diff(d,c,o) by A2,Def2,
Th114
; then o<>diff(d,c,o) & o,diff(d,c,o) // a,b & o,diff(d,c,o) // c,d by Def1;
    hence thesis by Def1; end;
   hence thesis by A3;
  end;
     a,b // c,d implies o,diff(b,a,o),diff(d,c,o) is_collinear
   proof assume A4: a,b // c,d;
  A5: now assume a=b or c =d; then o=diff(b,a,o) or o=diff(d,c,o) by Th113
;
    then o,diff(b,a,o) // o,diff(d,c,o) by Def1,Th14; hence thesis by Def2;
end;
     now assume a<>b & c <>d;
    then a<>b & c <>d & o,diff(b,a,o) // a,b & o,diff(d,c,o) // c,d by Th114;
    then a<>b & c <>d & a,b // o,diff(b,a,o) & c,d // o,diff(d,c,o) &
    a,b // c,d by A4,Th17;
    then o,diff(b,a,o) // c,d & c,d // o,diff(d,c,o) & c <>d by Def1;
    then o,diff(b,a,o) // o,diff(d,c,o) by Th20;
    hence thesis by Def2; end;
   hence thesis by A5;
  end;
  hence thesis by A1;
 end;

::
::                       A TRAPEZIUM RELATION
::

definition let SAS,a,b,c,d,o;
pred trap a,b,c,d,o means
 :Def8: not o,a,c is_collinear & o,a,b is_collinear & o,c,d is_collinear &
  a,c // b,d;
end;

definition let SAS,o,p;
pred qtrap o,p means
 :Def9: for b,c holds (ex d st ( o,p,b is_collinear implies
  o,c,d is_collinear & p,c // b,d));
end;

canceled 2;

theorem
Th118: trap a,b,c,d,o implies o<>a & a<>c & c <>o
 proof assume trap a,b,c,d,o; then not o,a,c is_collinear by Def8;hence
 thesis
 by Th40;
 end;

theorem
   trap a,b,c,x,o & trap a,b,c,y,o implies x=y
 proof assume trap a,b,c,x,o & trap a,b,c,y,o;
  then not o,a,c is_collinear & o,a,b is_collinear & o,c,x is_collinear &
  o,c,y is_collinear & a,c // b,x & a,c // b,y by Def8;
  hence thesis by Th51;
 end;

theorem
   not o,a,b is_collinear implies trap a,o,b,o,o
 proof assume A1: not o,a,b is_collinear;
    o,a,o is_collinear & o,b,o is_collinear & a,b // o,o by Def1,Th40;
  hence thesis by A1,Def8;
 end;

theorem
Th121: trap a,b,c,d,o implies trap c,d,a,b,o
 proof assume trap a,b,c,d,o;
  then not o,a,c is_collinear & o,a,b is_collinear & o,c,d is_collinear &
   a,c // b,d by Def8;
  then not o,c,a is_collinear & o,a,b is_collinear & o,c,d is_collinear &
   c,a // d,b by Th17,Th37;
  hence thesis by Def8;
 end;

theorem
Th122: o<>b & trap a,b,c,d,o implies o<>d
 proof assume o<>b & trap a,b,c,d,o;
  then A1: o<>b & not o,a,c is_collinear & o,a,b is_collinear & o,c,d
is_collinear
    & a,c // b,d by Def8;
  assume not thesis;
  then o,a // o,b & a,c // b,o & o<>b by A1,Def2;
  then o<>b & o,b // a,o & o,b // a,c by Th17;
  then a,o // a,c by Def1;
  then o,a // o,c by Th18;
  hence contradiction by A1,Def2;
 end;

theorem
Th123: o<>b & trap a,b,c,d,o implies not o,b,d is_collinear
 proof assume o<>b & trap a,b,c,d,o;
  then o<>b & o<>d & not o,a,c is_collinear & o,a,b is_collinear &
 o,c,d is_collinear by Def8,Th122; then o<>b & o<>d & not o,a,c is_collinear &
  o,a // o,b & o,c // o,d by Def2;
  hence thesis by Th39;
 end;

theorem
   o<>b & trap a,b,c,d,o implies trap b,a,d,c,o
 proof assume o<>b & trap a,b,c,d,o;
  then not o,b,d is_collinear & o,a,b is_collinear & o,c,d is_collinear &
   a,c // b,d by Def8,Th123;
  then not o,b,d is_collinear & o,b,a is_collinear & o,d,c is_collinear &
   b,d // a,c by Th17,Th37;
  hence thesis by Def8;
 end;

theorem
Th125: (o=b or o=d) & trap a,b,c,d,o implies o=b & o=d
 proof assume (o=b or o=d) & trap a,b,c,d,o;
  then (o=b & trap c,d,a,b,o) or (o=d & trap a,b,c,d,o) by Th121;
  hence thesis by Th122;
 end;

theorem
Th126: trap a,p,b,q,o & trap a,p,c,r,o implies b,c // q,r
 proof assume trap a,p,b,q,o & trap a,p,c,r,o;
  then not o,a,b is_collinear & o,a,p is_collinear & o,b,q is_collinear & a,b
// p,q
   & not o,a,c is_collinear & o,c,r is_collinear & a,c // p,r by Def8;
  then not o,a // o,b & o,a //o,p & o,b //o,q & a,b // p,q & not o,a //o,c &
                                        o,c //o,r & a,c // p,r by Def2;
  hence thesis by Def1;
 end;

theorem
Th127: trap a,p,b,q,o & trap a,p,c,r,o & not o,b,c is_collinear implies
 trap b,q,c,r,o
 proof assume trap a,p,b,q,o & trap a,p,c,r,o & not o,b,c is_collinear;
  then not o,b,c is_collinear & o,b,q is_collinear & o,c,r is_collinear &
   b,c // q,r by Def8,Th126;
  hence thesis by Def8;
 end;

theorem
   trap a,p,b,q,o & trap a,p,c,r,o & trap b,q,d,s,o implies c,d // r,s
 proof assume A1: trap a,p,b,q,o & trap a,p,c,r,o & trap b,q,d,s,o;
  A2: now assume not o,b,c is_collinear; then trap b,q,d,s,o & trap b,q,c,r,o
   by A1,Th127;
      hence thesis by Th126; end;
  A3: now assume not o,a,d is_collinear; then not o,a,d is_collinear &
   trap b,q,a,p,o by A1,Th121;
      then trap a,p,d,s,o & trap a,p,c,r,o by A1,Th127; hence thesis by Th126
;
      end;
  A4: now assume o=p; then o=p & o=q by A1,Th125; then o=r & o=s by A1,Th125
;
hence thesis by Def1; end;
     now assume A5: o<>p & o,b,c is_collinear & o,a,d is_collinear;
      then not o,a,b is_collinear & not o,p,q is_collinear by A1,Def8,Th123;
      then A6: not b,a,o is_collinear & not q,p,o is_collinear by Th37;
      then consider x such that A7: parallelogram b,a,o,x by Th62;
      consider y such that A8: parallelogram q,p,o,y by A6,Th62;
        a,b // p,q by A1,Def8;
      then b,a // q,p & b,a // o,x & q,p // o,y & b<>a & q<>p
                         by A7,A8,Def3,Th17,Th54;
                         then q<>p & q,p // o,x & q,p // o,y by Def1;
      then o,x // o,y by Def1; then A9: o,x,y is_collinear by Def2;
        o,b,q is_collinear by A1,Def8; then o,b // o,q by Def2;
      then b,o // q,o & b,o // a,x & q,o // p,y & b<>o & o<>q
                         by A7,A8,Def3,Th17,Th54;
      then q,o // a,x & q,o // p,y & q<>o by Def1;
      then a,x // p,y & o,a,p is_collinear & not o,a,x is_collinear by A1,A7,
Def1,Def8,Th56;
      then A10: trap a,p,x,y,o by A9,Def8;
        not o,b,x is_collinear by A7,Th56; then A11:trap b,q,x,y,o by A1,A10,
Th127;
        o,b // o,c & o,a // o,d & o,a // o,a & not o,x,b is_collinear & o<>x &
     o<>d & o<>c & not o,x,a is_collinear & o,x // o,x by A1,A5,A7,Def2,Th12,
Th54,Th56,Th118; then not o,x,c is_collinear & not o,x,d is_collinear by Th39
;
      then trap x,y,c,r,o & trap x,y,d,s,o by A1,A10,A11,Th127
; hence thesis by Th126;
       end;
  hence thesis by A2,A3,A4;
 end;

theorem
Th129: for o,a holds (ex p st o,a,p is_collinear & qtrap o,p)
 proof let o,a;
  consider p such that
A1: for b,c holds o,a // o,p & ex d st
   o,p // o,b implies o,c // o,d & p,c // b,d by Def1;
  take p;
     now
    thus o,a,p is_collinear by A1,Def2;
    let b,c;
    consider d such that
A2:  o,p // o,b implies o,c // o,d & p,c // b,d by A1;
    take d;
    assume o,p,b is_collinear;
    hence o,c,d is_collinear & p,c // b,d by A2,Def2;
   end;
   hence thesis by Def9;
        end;

theorem
Th130: ex x,y,z st x<>y & y<>z & z<>x
 proof consider x,y,z such that A1: not x,y // x,z by Def1;
       take x,y,z;
       thus thesis by A1,Def1,Th12,Th14;
       end;

theorem
Th131: qtrap o,p implies o<>p
 proof assume A1: qtrap o,p;
       assume A2: not thesis;
         ex b st o<>b proof
        consider x,y,z such that A3: x<>y & y<>z & z<>x by Th130;
          o<>x or o<>y or o<>z by A3; hence thesis; end;
     then consider b such that
    A4: o<>b;

       consider c such that
    A5: not o,b // o,c by A4,Th26;

       consider d such that
    A6: o,p,b is_collinear implies o,c,d is_collinear & p,c // b,d by A1,Def9;
          o,o // o,b implies o,c // o,d & o,c // b,d by A2,A6,Def2;
       then A7: (b=d & not o,b // o,c & o,c // o,d) or (b<>d & o<>c &
       not o,b // o,c & o,c // o,d & o,c // b,d) by A5,Def1,Th14;
          now assume A8: b<>d & not o,b // o,c & o,d // b,d & o,c // b,d;
        then d,o // d,b by Th17; hence b<>d & not o,b // o,c & b,d // o,b &
        b,d // o,c by A8,Th17,Th18; end;
        hence contradiction by A7,Def1,Th17;
        end;

theorem
   qtrap o,p implies ex q st not o,p,q is_collinear & qtrap o,q
 proof assume qtrap o,p;
         then A1: o<>p by Th131;
         then consider r such that
      A2: not o,p,r is_collinear by Th41;
         consider q such that
      A3: o,r,q is_collinear & qtrap o,q by Th129;
         take q;
           o<>q & not o,p,r is_collinear & o,p // o,p & o,r // o,q & qtrap o,q
         by A2,A3,Def2,Th12,Th131;
         hence thesis by A1,Th39;
       end;

theorem
   not o,p,c is_collinear & o,p,b is_collinear & qtrap o,p implies
      ex d st trap p,b,c,d,o
 proof assume A1: not o,p,c is_collinear & o,p,b is_collinear & qtrap o,p;
       then consider d such that
    A2: o,p,b is_collinear implies o,c,d is_collinear & p,c // b,d by Def9;
       take d;
       thus thesis by A1,A2,Def8;
     end;

Back to top