The Mizar article:

Fano-Desargues Parallelity Spaces

by
Eugeniusz Kusak, and
Wojciech Leonczuk

Received March 23, 1990

Copyright (c) 1990 Association of Mizar Users

MML identifier: PARSP_2
[ MML identifier index ]


environ

 vocabulary RLVECT_1, ARYTM_1, VECTSP_1, PARSP_1, MCART_1, RELAT_1, INCSP_1,
      PARSP_2;
 notation ZFMISC_1, SUBSET_1, MCART_1, DOMAIN_1, STRUCT_0, RLVECT_1, VECTSP_1,
      PARSP_1;
 constructors DOMAIN_1, PARSP_1, MEMBERED, XBOOLE_0;
 clusters VECTSP_1, PARSP_1, STRUCT_0, MEMBERED, ZFMISC_1, XBOOLE_0;
 theorems MCART_1, VECTSP_1, PARSP_1, RLVECT_1;

begin

::
::       1. A CONSTRUCTION OF A MODEL OF A FANO-DESARGUES SPACE
::

Lm1:
 for F being add-associative right_zeroed
                   right_complementable (non empty LoopStr),
     a,b being Element of F holds
 a - b = 0.F implies a = b
proof
 let F be add-associative right_zeroed
                   right_complementable (non empty LoopStr),
     a,b be Element of F;
 assume a - b = 0.F;
 then a + -b = 0.F by RLVECT_1:def 11;
 then a = - -b by RLVECT_1:19;
 hence thesis by RLVECT_1:30;
end;

Lm2:
 for F being add-associative right_zeroed
                   right_complementable (non empty LoopStr),
     x,y being Element of F holds
  (x+(-y)=0.F iff x=y) & (x-y=0.F iff x=y)
 proof let F be add-associative right_zeroed
                right_complementable (non empty LoopStr),
    x,y be Element of F;
    A1: x+(-y)=0.F iff x=y
     proof
         x+(-y)=0.F implies x=y
       proof
        assume x+(-y)=0.F;
        then x+((-y)+y)=0.F+y by RLVECT_1:def 6;
        then x+0.F=0.F+y by RLVECT_1:16;
        then x=0.F+y by RLVECT_1:10;
        hence thesis by RLVECT_1:10;
       end;
      hence thesis by RLVECT_1:16;
     end;
      x-y=0.F iff x=y
     proof
      A2: x-y=0.F implies x=y
       proof
        assume x-y=0.F;
        then x+(-y)+y=0.F+y by RLVECT_1:def 11;
        then x+((-y)+y)=0.F+y by RLVECT_1:def 6;
        then x+0.F=0.F+y by RLVECT_1:16;
        then x=0.F+y by RLVECT_1:10;
        hence thesis by RLVECT_1:10;
       end;
        x=y implies x-y=0.F
       proof
        assume x=y;
        then x-y=y+(-y) by RLVECT_1:def 11;
        hence thesis by RLVECT_1:16;
       end;
      hence thesis by A2;
     end;
   hence thesis by A1;
 end;

reserve F for Field;

theorem
Th1: MPS(F) is ParSp
 proof
    (for a,b,c,d,p,q,r,s being Element of MPS(F)
  holds a,b '||' b,a & a,b '||' c,c & (a,b '||' p,q & a,b '||' r,s
  implies p,q '||' r,s or a=b) & (a,b '||' a,c implies b,a '||' b,c)
  & (ex x being Element of MPS(F) st
  a,b '||' c,x & a,c '||' b,x)) by PARSP_1:24,25,26,27,28;
  hence thesis by PARSP_1:def 12;
 end;

reserve a,b,c,d,p,q,r for
        Element of MPS(F);
reserve e,f,g,h,i,j,k,l,m,n,o,w for
           Element of [:the carrier of F,the carrier of F,the carrier of F:];
reserve K,L,M,N,R,S for Element of F;

Lm3: (e`1-f`1)*(g`2-h`2) - (g`1-h`1)*(e`2-f`2) = 0.F &
      (e`1-f`1)*(g`3-h`3) - (g`1-h`1)*(e`3-f`3) = 0.F &
      (e`2-f`2)*(g`3-h`3) - (g`2-h`2)*(e`3-f`3) = 0.F iff
      (ex K st
       K*(e`1-f`1) = g`1-h`1 & K*(e`2-f`2) = g`2-h`2 & K*(e`3-f`3) = g`3-h`3)
       or
      (e`1-f`1 = 0.F & e`2-f`2 = 0.F & e`3-f`3 = 0.F)
proof
 A1: (e`1-f`1)*(g`2-h`2) - (g`1-h`1)*(e`2-f`2) = 0.F &
    (e`1-f`1)*(g`3-h`3) - (g`1-h`1)*(e`3-f`3) = 0.F &
    (e`2-f`2)*(g`3-h`3) - (g`2-h`2)*(e`3-f`3) = 0.F implies
     (ex K st
      K*(e`1-f`1) = g`1-h`1 & K*(e`2-f`2) = g`2-h`2 & K*(e`3-f`3) = g`3-h`3)
      or
     (e`1-f`1 = 0.F & e`2-f`2 = 0.F & e`3-f`3 = 0.F)
  proof
   assume A2: (e`1-f`1)*(g`2-h`2) - (g`1-h`1)*(e`2-f`2) = 0.F &
              (e`1-f`1)*(g`3-h`3) - (g`1-h`1)*(e`3-f`3) = 0.F &
              (e`2-f`2)*(g`3-h`3) - (g`2-h`2)*(e`3-f`3) = 0.F;
      now
   A3: now assume A4: e`1-f`1 <> 0.F;
A5:    ((g`1-h`1)*(e`1-f`1)")*(e`1-f`1) = (g`1-h`1)*((e`1-f`1)"*(e`1-f`1))
                                                   by VECTSP_1:def 16
                                   .= (g`1-h`1)*1_ F by A4,VECTSP_1:def 22
                                   .= g`1-h`1 by VECTSP_1:def 19;

A6:    ((g`1-h`1)*(e`1-f`1)")*(e`2-f`2) =
 (e`1-f`1)"*((g`1-h`1)*(e`2-f`2)) by VECTSP_1:def 16
       .= (e`1-f`1)"*((e`1-f`1)*(g`2-h`2)) by A2,Lm1
       .= ((e`1-f`1)"*(e`1-f`1))*(g`2-h`2) by VECTSP_1:def 16
       .= (g`2-h`2)*1_ F by A4,VECTSP_1:def 22
       .= g`2-h`2 by VECTSP_1:def 19;

      ((g`1-h`1)*(e`1-f`1)")*(e`3-f`3) =
 (e`1-f`1)"*((g`1-h`1)*(e`3-f`3)) by VECTSP_1:def 16
       .= (e`1-f`1)"*((e`1-f`1)*(g`3-h`3)) by A2,Lm1
       .= ((e`1-f`1)"*(e`1-f`1))*(g`3-h`3) by VECTSP_1:def 16
       .= (g`3-h`3)*1_ F by A4,VECTSP_1:def 22
       .= g`3-h`3 by VECTSP_1:def 19;
    hence thesis by A5,A6; end;
   A7: now assume A8: e`2-f`2 <> 0.F;
A9:    ((g`2-h`2)*(e`2-f`2)")*(e`1-f`1) =
 ((e`1-f`1)*(g`2-h`2))*(e`2-f`2)" by VECTSP_1:def 16
       .= ((g`1-h`1)*(e`2-f`2))*(e`2-f`2)" by A2,Lm1
       .= (g`1-h`1)*((e`2-f`2)*(e`2-f`2)") by VECTSP_1:def 16
       .= (g`1-h`1)*1_ F by A8,VECTSP_1:def 22
       .= g`1-h`1 by VECTSP_1:def 19;
A10:    ((g`2-h`2)*(e`2-f`2)")*(e`2-f`2) = (g`2-h`2)*((e`2-f`2)"*(e`2-f`2))
                                       by VECTSP_1:def 16
       .= (g`2-h`2)*1_ F by A8,VECTSP_1:def 22
       .= g`2-h`2 by VECTSP_1:def 19;
      ((g`2-h`2)*(e`2-f`2)")*(e`3-f`3) =
 (e`2-f`2)"*((g`2-h`2)*(e`3-f`3)) by VECTSP_1:def 16
       .= (e`2-f`2)"*((e`2-f`2)*(g`3-h`3)) by A2,Lm1
       .= ((e`2-f`2)"*(e`2-f`2))*(g`3-h`3) by VECTSP_1:def 16
       .= (g`3-h`3)*1_ F by A8,VECTSP_1:def 22
       .= g`3-h`3 by VECTSP_1:def 19;
    hence thesis by A9,A10; end;
      now assume A11: e`3-f`3 <> 0.F;
A12:    ((g`3-h`3)*(e`3-f`3)")*(e`1-f`1) =
 ((e`1-f`1)*(g`3-h`3))*(e`3-f`3)" by VECTSP_1:def 16
       .= ((g`1-h`1)*(e`3-f`3))*(e`3-f`3)" by A2,Lm1
       .= (g`1-h`1)*((e`3-f`3)*(e`3-f`3)") by VECTSP_1:def 16
       .= (g`1-h`1)*1_ F by A11,VECTSP_1:def 22
       .= g`1-h`1 by VECTSP_1:def 19;

A13:    ((g`3-h`3)*(e`3-f`3)")*(e`2-f`2) =
 ((e`2-f`2)*(g`3-h`3))*(e`3-f`3)" by VECTSP_1:def 16
       .= ((g`2-h`2)*(e`3-f`3))*(e`3-f`3)" by A2,Lm1
       .= (g`2-h`2)*((e`3-f`3)*(e`3-f`3)") by VECTSP_1:def 16
       .= (g`2-h`2)*1_ F by A11,VECTSP_1:def 22
       .= g`2-h`2 by VECTSP_1:def 19;

      ((g`3-h`3)*(e`3-f`3)")*(e`3-f`3) = (g`3-h`3)*((e`3-f`3)"*(e`3-f`3))
                                       by VECTSP_1:def 16
       .= (g`3-h`3)*1_ F by A11,VECTSP_1:def 22
       .= g`3-h`3 by VECTSP_1:def 19;
    hence thesis by A12,A13; end;
    hence thesis by A3,A7; end;
   hence thesis;
  end;

   (ex K st
 K*(e`1-f`1) = g`1-h`1 & K*(e`2-f`2) = g`2-h`2 & K*(e`3-f`3) = g`3-h`3) or
 (e`1-f`1 = 0.F & e`2-f`2 = 0.F & e`3-f`3 = 0.F) implies
 (e`1-f`1)*(g`2-h`2) - (g`1-h`1)*(e`2-f`2) = 0.F &
 (e`1-f`1)*(g`3-h`3) - (g`1-h`1)*(e`3-f`3) = 0.F &
 (e`2-f`2)*(g`3-h`3) - (g`2-h`2)*(e`3-f`3) = 0.F
  proof
   assume A14: (ex K st
      K*(e`1-f`1) = g`1-h`1 & K*(e`2-f`2) = g`2-h`2 & K*(e`3-f`3) = g`3-h`3)
      or
     (e`1-f`1 = 0.F & e`2-f`2 = 0.F & e`3-f`3 = 0.F);
   A15: now assume A16: e`1-f`1 = 0.F & e`2-f`2 = 0.F & e`3-f`3 = 0.F;
    then A17: (e`1-f`1)*(g`2-h`2) = 0.F by VECTSP_1:39;

    A18: (e`1-f`1)*(g`3-h`3) = 0.F by A16,VECTSP_1:39;
      (g`1-h`1)*(e`3-f`3) = 0.F by A16,VECTSP_1:39;
   hence thesis by A16,A17,A18,RLVECT_1:28; end;
      now given K such that A19: K*(e`1-f`1) = g`1-h`1 &
                                   K*(e`2-f`2) = g`2-h`2 &
                                   K*(e`3-f`3) = g`3-h`3;
    A20: (e`1-f`1)*(g`2-h`2) - (g`1-h`1)*(e`2-f`2) = 0.F
      proof
         (e`1-f`1)*(g`2-h`2) - (g`1-h`1)*(e`2-f`2) =
 (K*(e`1-f`1))*(e`2-f`2) - (K*(e`1-f`1))*(e`2-f`2) by A19,VECTSP_1:def 16;
         hence thesis by RLVECT_1:28;
      end;
    A21: (e`1-f`1)*(g`3-h`3) - (g`1-h`1)*(e`3-f`3) = 0.F
      proof
         (e`1-f`1)*(g`3-h`3) - (g`1-h`1)*(e`3-f`3) =
 (K*(e`1-f`1))*(e`3-f`3) - (K*(e`1-f`1))*(e`3-f`3) by A19,VECTSP_1:def 16;
         hence thesis by RLVECT_1:28;
      end;
      (e`2-f`2)*(g`3-h`3) - (g`2-h`2)*(e`3-f`3) = 0.F
      proof
         (e`2-f`2)*(g`3-h`3) - (g`2-h`2)*(e`3-f`3) =
 (K*(e`2-f`2))*(e`3-f`3) - (K*(e`2-f`2))*(e`3-f`3) by A19,VECTSP_1:def 16;
         hence thesis by RLVECT_1:28;
      end;
    hence thesis by A20,A21; end;
    hence thesis by A14,A15;
  end;
 hence thesis by A1;
end;

theorem
Th2: a,b '||' c,d iff ex e,f,g,h st [a,b,c,d] = [e,f,g,h] &
      ((ex K st
      K*(e`1-f`1) = g`1-h`1 & K*(e`2-f`2) = g`2-h`2 &
      K*(e`3-f`3) = g`3-h`3) or
      (e`1-f`1 = 0.F & e`2-f`2 = 0.F & e`3-f`3 = 0.F))
 proof
  A1: a,b '||' c,d implies ex e,f,g,h st [a,b,c,d] = [e,f,g,h] &
     ((ex K st
      K*(e`1-f`1) = g`1-h`1 & K*(e`2-f`2) = g`2-h`2 &
      K*(e`3-f`3) = g`3-h`3) or
      (e`1-f`1 = 0.F & e`2-f`2 = 0.F & e`3-f`3 = 0.F))
  proof
   assume a,b '||' c,d;
   then consider e,f,g,h such that A2: [a,b,c,d] = [e,f,g,h] &
       (e`1-f`1)*(g`2-h`2) - (g`1-h`1)*(e`2-f`2) = 0.F &
       (e`1-f`1)*(g`3-h`3) - (g`1-h`1)*(e`3-f`3) = 0.F &
       (e`2-f`2)*(g`3-h`3) - (g`2-h`2)*(e`3-f`3) = 0.F by PARSP_1:23;
        (ex K st
      K*(e`1-f`1) = g`1-h`1 & K*(e`2-f`2) = g`2-h`2 &
      K*(e`3-f`3) = g`3-h`3) or
      (e`1-f`1 = 0.F & e`2-f`2 = 0.F & e`3-f`3 = 0.F) by A2,Lm3;
   hence thesis by A2;
  end;
     (ex e,f,g,h st [a,b,c,d] = [e,f,g,h] &
       ((ex K st
       K*(e`1-f`1) = g`1-h`1 & K*(e`2-f`2) = g`2-h`2 &
       K*(e`3-f`3) = g`3-h`3) or
       (e`1-f`1 = 0.F & e`2-f`2 = 0.F & e`3-f`3 = 0.F))) implies a,b '||' c,d
   proof
    given e,f,g,h such that A3: [a,b,c,d] = [e,f,g,h] &
               ((ex K st
                 K*(e`1-f`1) = g`1-h`1 & K*(e`2-f`2) = g`2-h`2 &
                 K*(e`3-f`3) = g`3-h`3) or
                (e`1-f`1 = 0.F & e`2-f`2 = 0.F & e`3-f`3 = 0.F));
      (e`1-f`1)*(g`2-h`2) - (g`1-h`1)*(e`2-f`2) = 0.F &
    (e`1-f`1)*(g`3-h`3) - (g`1-h`1)*(e`3-f`3) = 0.F &
    (e`2-f`2)*(g`3-h`3) - (g`2-h`2)*(e`3-f`3) = 0.F by A3,Lm3;
    hence thesis by A3,PARSP_1:23;
   end;
   hence thesis by A1;
  end;

theorem
Th3: not a,b '||' a,c & [a,b,a,c]=[e,f,e,g] implies e<>f & e<>g & f<>g
 proof assume that A1: not a,b '||' a,c and A2: [a,b,a,c]=[e,f,e,g];
A3:   e`1-f`1 <> 0.F or e`2-f`2 <> 0.F or e`3-f`3 <> 0.F by A1,A2,Th2;
    0.F*(e`1-f`1) <> e`1-g`1 or 0.F*(e`2-f`2) <> e`2-g`2 or
  0.F*(e`3-f`3) <> e`3-g`3 by A1,A2,Th2;
then A4:  0.F <> e`1-g`1 or 0.F <> e`2-g`2 or 0.F <> e`3-g`3 by VECTSP_1:44;
    f<>g
   proof assume A5: not thesis;
  (e`1-f`1)*1_ F <> e`1-g`1 or (e`2-f`2)*1_ F <> e`2-g`2 or
    (e`3-f`3)*1_ F <> e`3-g`3 by A1,A2,Th2;
    hence contradiction by A5,VECTSP_1:def 19; end;
  hence thesis by A3,A4,RLVECT_1:28;
 end;

theorem
Th4: not a,b '||' a,c & [a,b,a,c] = [e,f,e,g] & K*(e`1-f`1)=L*(e`1-g`1) &
      K*(e`2-f`2)=L*(e`2-g`2) & K*(e`3-f`3)=L*(e`3-g`3) implies K=0.F & L=0.F
 proof assume that A1: not a,b '||' a,c and A2: [a,b,a,c] = [e,f,e,g] and
                   A3: K*(e`1-f`1)=L*(e`1-g`1) & K*(e`2-f`2)=L*(e`2-g`2) &
                       K*(e`3-f`3)=L*(e`3-g`3);
    K*(e`1-f`1)*(e`2-g`2)=L*((e`1-g`1)*(e`2-g`2)) &
  K*(e`2-f`2)*(e`1-g`1)=L*((e`2-g`2)*(e`1-g`1)) &
  K*(e`2-f`2)*(e`3-g`3)=L*((e`2-g`2)*(e`3-g`3)) &
  K*(e`3-f`3)*(e`2-g`2)=L*((e`3-g`3)*(e`2-g`2)) &
  K*(e`1-f`1)*(e`3-g`3)=L*((e`1-g`1)*(e`3-g`3)) &
  K*(e`3-f`3)*(e`1-g`1)=L*((e`3-g`3)*(e`1-g`1)) by A3,VECTSP_1:def 16;
  then K*(e`1-f`1)*(e`2-g`2)-K*(e`2-f`2)*(e`1-g`1) = 0.F &
  K*(e`2-f`2)*(e`3-g`3)-K*(e`3-f`3)*(e`2-g`2) = 0.F &
  K*(e`1-f`1)*(e`3-g`3)-K*(e`3-f`3)*(e`1-g`1) = 0.F by RLVECT_1:28;
  then K*((e`1-f`1)*(e`2-g`2))-K*(e`2-f`2)*(e`1-g`1) = 0.F &
  K*((e`2-f`2)*(e`3-g`3))-K*(e`3-f`3)*(e`2-g`2) = 0.F &
  K*((e`1-f`1)*(e`3-g`3))-K*(e`3-f`3)*(e`1-g`1) = 0.F by VECTSP_1:def 16;
  then K*((e`1-f`1)*(e`2-g`2))-K*((e`2-f`2)*(e`1-g`1)) = 0.F &
  K*((e`2-f`2)*(e`3-g`3))-K*((e`3-f`3)*(e`2-g`2)) = 0.F &
  K*((e`1-f`1)*(e`3-g`3))-K*((e`3-f`3)*(e`1-g`1)) = 0.F by VECTSP_1:def 16;
  then A4: K*((e`1-f`1)*(e`2-g`2)-(e`1-g`1)*(e`2-f`2)) = 0.F &
      K*((e`2-f`2)*(e`3-g`3)-(e`2-g`2)*(e`3-f`3)) = 0.F &
      K*((e`1-f`1)*(e`3-g`3)-(e`1-g`1)*(e`3-f`3)) = 0.F by VECTSP_1:43;
A5:  (e`1-f`1)*(e`2-g`2)-(e`1-g`1)*(e`2-f`2) <> 0.F or
  (e`2-f`2)*(e`3-g`3)-(e`2-g`2)*(e`3-f`3) <> 0.F or
  (e`1-f`1)*(e`3-g`3)-(e`1-g`1)*(e`3-f`3) <> 0.F by A1,A2,PARSP_1:23;
   then K=0.F by A4,VECTSP_1:44;
  then A6: 0.F=L*(e`1-g`1) & 0.F=L*(e`2-g`2) & 0.F=L*(e`3-g`3) by A3,VECTSP_1:
39;
     e=[e`1,e`2,e`3] & g=[g`1,g`2,g`3] by MCART_1:48;
  then e`1 <> g`1 or e`2 <> g`2 or e`3 <> g`3 by A1,A2,Th3;
  then e`1-g`1 <> 0.F or e`2-g`2 <> 0.F or e`3-g`3 <> 0.F by Lm2;
  hence thesis by A4,A5,A6,VECTSP_1:44;
 end;

 Lm4:
 for F being add-associative right_zeroed
                     right_complementable (non empty LoopStr),
     a, b, c being Element of F holds
  (b+a)-(c+a) = b-c
 proof let F be add-associative right_zeroed
                     right_complementable (non empty LoopStr),
    a,b,c be Element of F;
    thus (b+a)-(c+a) = (b+a)+-(c+a) by RLVECT_1:def 11
                    .= (b+a)+(-a+-c) by RLVECT_1:45
                    .= ((b+a)+-a)+-c by RLVECT_1:def 6
                    .= (b+(a+-a))+-c by RLVECT_1:def 6
                    .= (b+0.F)+-c by RLVECT_1:def 10
                    .= b+-c by RLVECT_1:10
                    .= b-c by RLVECT_1:def 11;
 end;

Lm5: (K-L)-(R-L)=K-R
 proof thus (K-L)-(R-L)=(K+(-L))-(R-L) by RLVECT_1:def 11
  .= ((-L)+K)-(R+(-L)) by RLVECT_1:def 11 .= K-R by Lm4;
 end;

Lm6: K*(N-M)-L*(N-S)=S-M implies (K+(-1_ F))*(N-M)=(L+(-1_ F))*(N-S)
 proof assume K*(N-M)-L*(N-S) = S-M;
  then K*(N-M)-L*(N-S) = S+(-M) by RLVECT_1:def 11
  .= S+(-M)+0.F by RLVECT_1:10 .= (-M)+S+(-(N)+N) by RLVECT_1:16 .=
 S+((-(N)+N)+(-M)) by RLVECT_1:def 6
  .= S+(-(N)+(N+(-M))) by RLVECT_1:def 6 .= S+(-(N)+(N-M)) by RLVECT_1:def 11
  .= (S+(-(N)))+(N-M) by RLVECT_1:def 6 .= (S-N)+(N-M) by RLVECT_1:def 11;
  then K*(N-M)+(-L*(N-S))+L*(N-S) = (S-N)+(N-M)+L*(N-S) by RLVECT_1:def 11;
  then K*(N-M)+((-L*(N-S))+L*(N-S)) = (S-N)+(N-M)+L*(N-S) by RLVECT_1:def 6;
  then K*(N-M)+0.F = (S-N)+(N-M)+L*(N-S) by RLVECT_1:16;
  then K*(N-M) = (S-N)+(N-M)+L*(N-S) by RLVECT_1:10
  .= ((S-N)+L*(N-S))+(N-M) by RLVECT_1:def 6;
  then K*(N-M)+(-(N-M)) = ((S-N)+L*(N-S))+((N-M)+(-(N-M))) by RLVECT_1:def 6
  .= ((S-N)+L*(N-S))+0.F by RLVECT_1:16 .= (S-N)+L*(N-S) by RLVECT_1:10
  .= (S+-N)+L*(N-S) by RLVECT_1:def 11
  .= L*(N-S)+(-(N-S)) by RLVECT_1:47;
  then K*(N-M)+(-(1_ F*(N-M))) = L*(N-S)+(-(N-S)) by VECTSP_1:def 19;
  then K*(N-M)+((-1_ F)*(N-M)) = L*(N-S)+(-(N-S)) by VECTSP_1:41;
  then (K+(-1_ F))*(N-M) = L*(N-S)+(-(N-S)) by VECTSP_1:def 18
  .= L*(N-S)+(-(1_ F*(N-S))) by VECTSP_1:def 19
  .= L*(N-S)+((-1_ F)*(N-S)) by VECTSP_1:41;
  hence thesis by VECTSP_1:def 18;
 end;

Lm7: K-L=N-M implies M=L+N-K
proof assume K-L=N-M; then M+(K+(-L))=M+(N-M) by RLVECT_1:def 11;
 then M+(K+(-L))=M+(N+(-M)) by RLVECT_1:def 11;
 then (M+K)+(-L)=M+(N+(-M)) by RLVECT_1:def 6;
 then (M+K)+(-L)=(M+N)+(-M) by RLVECT_1:def 6;
 then M+K-L=N+M+(-M) by RLVECT_1:def 11;
 then M+K-L=N+(M+(-M)) by RLVECT_1:def 6;
 then M+K-L=N+0.F by RLVECT_1:16;
 then M+K-L+L=N+L by RLVECT_1:10; then M+K+(-L)+L=N+L by RLVECT_1:def 11;
 then M+K+((-L)+L)=N+L by RLVECT_1:def 6;
 then M+K+0.F=L+N by RLVECT_1:16;
 then M+K+(-K)=L+N+(-K) by RLVECT_1:10; then M+K+(-K)=L+N-K by RLVECT_1:def 11;
 then M+(K+(-K))=L+N-K by RLVECT_1:def 6; then M+0.F=L+N-K by RLVECT_1:16;
 hence thesis by RLVECT_1:10;
end;

theorem
Th5: not a,b '||' a,c & a,b '||' c,d & a,c '||' b,d & [a,b,c,d] = [e,f,g,h]
        implies h`1=f`1+g`1-e`1 & h`2=f`2+g`2-e`2 & h`3=f`3+g`3-e`3
 proof assume that A1: not a,b '||' a,c and A2: a,b '||' c,d and A3: a,c '||'
 b,d and
                   A4: [a,b,c,d]=[e,f,g,h];
  A5: a=e & b=f & c =g & d=h by A4,MCART_1:33;
  then A6: [a,b,a,c]=[e,f,e,g];
  A7: e=[e`1,e`2,e`3] & f=[f`1,f`2,f`3] & g=[g`1,g`2,g`3] by MCART_1:48;
then A8:  e`1<>f`1 or e`2<>f`2 or e`3<>f`3 by A1,A6,Th3;
  consider i,j,k,l such that A9: [a,b,c,d]=[i,j,k,l] & (( ex K st
              K*(i`1-j`1) = k`1-l`1 & K*(i`2-j`2) = k`2-l`2 &
                                K*(i`3-j`3) = k`3-l`3) or
             (i`1-j`1=0.F & i`2-j`2=0.F & i`3-j`3=0.F)) by A2,Th2;
     e=i & f=j & g=k & h=l by A4,A9,MCART_1:33;
  then consider K such that A10: K*(e`1-f`1) = g`1-h`1 & K*(e`2-f`2) = g`2-h`2
&
                           K*(e`3-f`3) = g`3-h`3 by A8,A9,Lm2;
A11:  e`1<>g`1 or e`2<>g`2 or e`3<>g`3 by A1,A6,A7,Th3;
  consider m,n,o,w such that A12: [a,c,b,d]=[m,n,o,w] & (( ex L st
              L*(m`1-n`1) = o`1-w`1 & L*(m`2-n`2) = o`2-w`2 &
                                L*(m`3-n`3) = o`3-w`3) or
             (m`1-n`1=0.F & m`2-n`2=0.F & m`3-n`3=0.F)) by A3,Th2;
     e=m & n=g & o=f & w=h by A5,A12,MCART_1:33;
  then consider L such that A13: L*(e`1-g`1) = f`1-h`1 & L*(e`2-g`2) = f`2-h`2
&
                           L*(e`3-g`3) = f`3-h`3 by A11,A12,Lm2;
    K*(e`1-f`1)-L*(e`1-g`1) = g`1-f`1 &
  K*(e`2-f`2)-L*(e`2-g`2) = g`2-f`2 &
  K*(e`3-f`3)-L*(e`3-g`3) = g`3-f`3 by A10,A13,Lm5;
  then (K+(-1_ F))*(e`1-f`1) = (L+(-1_ F))*(e`1-g`1) &
  (K+(-1_ F))*(e`2-f`2) = (L+(-1_ F))*(e`2-g`2) &
  (K+(-1_ F))*(e`3-f`3) = (L+(-1_ F))*(e`3-g`3) by Lm6;
  then K+(-1_ F)=0.F & L+(-1_ F)=0.F by A1,A6,Th4; then (e`1-f`1)*1_ F = g`1-
h`1 &
  (e`2-f`2)*1_ F = g`2-h`2 & (e`3-f`3)*1_ F = g`3-h`3 by A10,Lm2;
  then e`1-f`1 = g`1-h`1 & e`2-f`2 = g`2-h`2 & e`3-f`3 = g`3-h`3 by VECTSP_1:
def 19;
  hence thesis by Lm7;
 end;

Lm8: L*K-L*R=R+K implies (L-1_ F)*K=(L+1_ F)*R
 proof assume L*K-L*R=R+K; then L*K+(-L*R)+(-K)=R+K+(-K) by RLVECT_1:def 11
  .=R+(K+(-K)) by RLVECT_1:def 6 .=R+0.F by RLVECT_1:16 .=R by RLVECT_1:10;
  then (L*K+(-K))+(-L*R)=R by RLVECT_1:def 6;
  then (L*K+(-(1_ F*K)))+(-L*R)=R by VECTSP_1:def 19;
  then (L*K+(-1_ F)*K)+(-L*R)=R by VECTSP_1:41;
  then (L+(-1_ F))*K+(-L*R)=R by VECTSP_1:def 18;
  then (L-1_ F)*K+(-L*R)+L*R=R+L*R by RLVECT_1:def 11;
  then (L-1_ F)*K+((-L*R)+L*R)=R+L*R by RLVECT_1:def 6;
  then (L-1_ F)*K+0.F=R+L*R by RLVECT_1:16;
  then (L-1_ F)*K=L*R+R by RLVECT_1:10
  .=L*R+1_ F*R by VECTSP_1:def 19;
  hence thesis by VECTSP_1:def 18;
 end;

Lm9: L*(K-N)=R-S & S=K+N-R implies (L-1_ F)*(R-N)=(L+1_ F)*(R-K)
 proof assume L*(K-N)=R-S & S=K+N-R;
  then A1: L*(K-N)=R+(-(K+N-R)) by RLVECT_1:def 11
       .=R+(R+(-(K+N))) by RLVECT_1:47
       .=R+(R+(-K+(-N))) by RLVECT_1:45 .=R+(-N+(R+(-K))) by RLVECT_1:def 6
 .=(R+(-N))+(R+(-K)) by RLVECT_1:def 6
       .=(R-N)+(R+(-K)) by RLVECT_1:def 11 .=(R-K)+(R-N) by RLVECT_1:def 11;
    L*(R-N)-L*(R-K)=L*(R+(-N))-L*(R-K) by RLVECT_1:def 11
       .=L*(R+(-N))-L*(R+(-K)) by RLVECT_1:def 11
       .=L*(R+(-N))+(-L*(R+(-K))) by RLVECT_1:def 11
       .=L*R+L*(-N)+(-L*(R+(-K))) by VECTSP_1:def 18
       .=L*R+L*(-N)+((-L)*(R+(-K))) by VECTSP_1:41
       .=L*R+L*(-N)+((-L)*R+(-L)*(-K)) by VECTSP_1:def 18
       .=L*R+L*(-N)+((-L)*R+L*K) by VECTSP_1:42
       .=L*(-N)+L*R+(-L*R+L*K) by VECTSP_1:41
       .=L*(-N)+L*R+(-L*R)+L*K by RLVECT_1:def 6
       .=L*(-N)+(L*R+(-L*R))+L*K by RLVECT_1:def 6
       .=L*(-N)+0.F+L*K by RLVECT_1:16 .=L*K+L*(-N) by RLVECT_1:10
 .=L*(K+(-N)) by VECTSP_1:def 18
       .=L*(K-N) by RLVECT_1:def 11;
  hence thesis by A1,Lm8;
 end;

Lm10: K=L+M-N & R=L+S-N implies 1_ F*(M-S)=K-R
 proof assume A1: K=L+M-N & R=L+S-N;
  then -R=-(L+S+(-N)) by RLVECT_1:def 11 .=-(L+S)+(-(-N)) by RLVECT_1:45
   .=-(L+S)+N by RLVECT_1:30 .=-L+(-S)+N by RLVECT_1:45;
  then K-R=(L+M-N)+(-L+(-S)+N) by A1,RLVECT_1:def 11
    .=(M+L+(-N))+(-L+(-S)+N) by RLVECT_1:def 11
    .=(M+L+(-N))+(-S+(-L+N)) by RLVECT_1:def 6
    .=(M+(L+(-N)))+(-S+(-L+N)) by RLVECT_1:def 6
    .=(M+(L-N))+(-S+(-L+N)) by RLVECT_1:def 11
    .=(M+(L-N))+(-S+(-L+(-(-N)))) by RLVECT_1:30
    .=(M+(L-N))+(-S+(-(L+(-N)))) by RLVECT_1:45
    .=(M+(L-N))+(-(L-N)+(-S)) by RLVECT_1:def 11
    .=((M+(L-N))+(-(L-N)))+(-S) by RLVECT_1:def 6
    .=(M+((L-N)+(-(L-N))))+(-S) by RLVECT_1:def 6
    .=(M+0.F)+(-S) by RLVECT_1:16 .=M+(-S) by RLVECT_1:10
    .=M*1_ F+(-S) by VECTSP_1:def 19 .=M*1_ F+(-S)*1_ F by VECTSP_1:def 19
    .=(M+(-S))*1_ F by VECTSP_1:def 18 .=(M-S)*1_ F by RLVECT_1:def 11;
  hence thesis;
 end;

theorem
Th6: ex a,b,c st not a,b '||' a,c
 proof A1: the carrier of MPS(F) =
         [:the carrier of F,the carrier of F,the carrier of F:] by PARSP_1:21;
   consider e,f,g being Element of
   [:the carrier of F,the carrier of F,the carrier of F:] such that
  A2: e=[1_ F,1_ F,0.F] & f=[-0.F,1_ F,0.F] & g=[1_ F,-0.F,0.F];
  A3: e`1=1_ F & e`2=1_ F & e`3=0.F &
       f`1=-0.F & f`2=1_ F & f`3=0.F &
       g`1=1_ F & g`2=-0.F & g`3=0.F by A2,MCART_1:47;

   A4: (e`1-f`1)*(e`2-g`2)-(e`1-g`1)*(e`2-f`2) <> 0.F
    proof
     A5: (e`1-f`1)*(e`2-g`2)-(e`1-g`1)*(e`2-f`2) =
(1_ F+(-(-0.F)))*(1_ F-(-0.F))-(1_ F-1_ F)*(1_ F-1_ F) by A3,RLVECT_1:def 11
     .= (1_ F+(-(-0.F)))*(1_ F+(-(-0.F)))-(1_ F-1_ F)*(1_ F-1_ F)
       by RLVECT_1:def 11
     .= (1_ F+0.F)*(1_ F+(-(-0.F)))-(1_ F-1_ F)*(1_ F-1_ F) by RLVECT_1:30
     .= (1_ F+0.F)*(1_ F+0.F)-(1_ F-1_ F)*(1_ F-1_ F) by RLVECT_1:30
     .= 1_ F*(1_ F+0.F)-(1_ F-1_ F)*(1_ F-1_ F) by RLVECT_1:10
     .= 1_ F*1_ F-(1_ F-1_ F)*(1_ F-1_ F) by RLVECT_1:10
     .= 1_ F*1_ F-0.F*(1_ F-1_ F) by RLVECT_1:28
     .= 1_ F*1_ F-0.F by VECTSP_1:44 .= 1_ F-0.F by VECTSP_1:def 19;
       1_ F<>0.F by VECTSP_1:def 21;
     hence thesis by A5,Lm2;
    end;
  consider a,b,c being Element of MPS(F) such that
  A6: [a,b,a,c]=[e,f,e,g] by A1; take a,b,c;
     now let e',f',g',h' be Element of
       [:the carrier of F,the carrier of F,the carrier of F:]; assume
          [e',f',g',h']=[a,b,a,c];
       then e'=e & f'=f & g'=e & h'=g by A6,MCART_1:33;
       hence (e'`1-f'`1)*(g'`2-h'`2) - (g'`1-h'`1)*(e'`2-f'`2) <> 0.F or
             (e'`1-f'`1)*(g'`3-h'`3) - (g'`1-h'`1)*(e'`3-f'`3) <> 0.F or
             (e'`2-f'`2)*(g'`3-h'`3) - (g'`2-h'`2)*(e'`3-f'`3) <> 0.F by A4;
      end;
  hence thesis by PARSP_1:23;
 end;

theorem
Th7: 1_ F+1_ F<>0.F & b,c '||' a,d & a,b '||' c,d & a,c '||' b,d implies a,b
'||' a,c
proof assume that A1: 1_ F+1_ F<>0.F and A2: b,c '||' a,d and A3: a,b '||'
 c,d and
                  A4: a,c '||' b,d;
 assume A5: not thesis;
 consider e,f,g,h such that A6: [a,b,c,d]=[e,f,g,h] & ((ex K st
                  K*(e`1-f`1) = g`1-h`1 & K*(e`2-f`2) = g`2-h`2 &
                  K*(e`3-f`3) = g`3-h`3) or
                  (e`1-f`1 = 0.F & e`2-f`2 = 0.F & e`3-f`3 = 0.F)) by A3,Th2;
  A7: a=e & b=f & c =g & d=h by A6,MCART_1:33; then A8: [a,b,a,c]=[e,f,e,g];

  A9: e=[e`1,e`2,e`3] & f=[f`1,f`2,f`3] & g=[g`1,g`2,g`3] by MCART_1:48;
  A10: h`1=f`1+g`1-e`1 & h`2=f`2+g`2-e`2 & h`3=f`3+g`3-e`3
                                                     by A3,A4,A5,A6,Th5;
  consider i,j,k,l such that A11:  [b,c,a,d]=[i,j,k,l] & ((ex L st
                  L*(i`1-j`1) = k`1-l`1 & L*(i`2-j`2) = k`2-l`2 &
                  L*(i`3-j`3) = k`3-l`3) or
                  (i`1-j`1 = 0.F & i`2-j`2 = 0.F & i`3-j`3 = 0.F)) by A2,Th2;
  A12: b=i & c =j & a=k & d=l by A11,MCART_1:33;
  then i`1<>j`1 or i`2<>j`2 or i`3<>j`3 by A5,A7,A8,A9,Th3;
  then consider L such that A13: L*(f`1-g`1) = e`1-h`1 & L*(f`2-g`2) = e`2-h`2
&
                           L*(f`3-g`3) = e`3-h`3 by A7,A11,A12,Lm2;
    (L-1_ F)*(e`1-g`1)=(L+1_ F)*(e`1-f`1) &
  (L-1_ F)*(e`2-g`2)=(L+1_ F)*(e`2-f`2) &
  (L-1_ F)*(e`3-g`3)=(L+1_ F)*(e`3-f`3) by A10,A13,Lm9;
  then L+1_ F=0.F & L-1_ F=0.F by A5,A8,Th4;
  then L+1_ F-(L-1_ F)=0.F+(-0.F) by RLVECT_1:def 11;
  then L+1_ F-(L-1_ F)=0.F by RLVECT_1:16;
  then L+1_ F+(-(L-1_ F))=0.F by RLVECT_1:def 11;
  then L+1_ F+(1_ F+-L)=0.F by RLVECT_1:47;
  then (L+1_ F+1_ F)+(-L)=0.F by RLVECT_1:def 6;
  then (1_ F+1_ F+L)+(-L)=0.F by RLVECT_1:def 6;
  then 1_ F+1_ F+(L+(-L))=0.F by RLVECT_1:def 6;
  then 1_ F+1_ F+0.F=0.F by RLVECT_1:16;
  hence contradiction by A1,RLVECT_1:10;
end;

theorem
Th8: not a,p '||' a,b & not a,p '||' a,c & a,p '||' b,q & a,p '||' c,r & a,b
'||' p,q &
      a,c '||' p,r implies b,c '||' q,r
 proof assume that A1: not a,p '||' a,b and A2: not a,p '||' a,c and
       A3: a,p '||' b,q and A4: a,p '||' c,r and A5: a,b '||' p,q and A6: a,c
'||' p,r;
  consider e,f,g,h such that A7: [a,b,p,q]=[e,f,g,h] & ((ex K st
                  K*(e`1-f`1) = g`1-h`1 & K*(e`2-f`2) = g`2-h`2 &
                  K*(e`3-f`3) = g`3-h`3) or
                  (e`1-f`1 = 0.F & e`2-f`2 = 0.F & e`3-f`3 = 0.F)) by A5,Th2;
  A8: a=e & b=f & p=g & q=h by A7,MCART_1:33;
  consider i,j,k,l such that A9: [a,p,c,r]=[i,j,k,l] & ((ex L st
                  L*(i`1-j`1) = k`1-l`1 & L*(i`2-j`2) = k`2-l`2 &
                  L*(i`3-j`3) = k`3-l`3) or
                  (i`1-j`1 = 0.F & i`2-j`2 = 0.F & i`3-j`3 = 0.F)) by A4,Th2;
  A10: a=i & p=j & c =k & r=l by A9,MCART_1:33;
  A11: [a,p,b,q]=[e,g,f,h] by A8;
  A12: [a,p,c,r]=[e,g,k,l] by A8,A10;
  A13: h`1=g`1+f`1-e`1 & h`2=g`2+f`2-e`2 & h`3=g`3+f`3-e`3
                                                      by A1,A3,A5,A11,Th5;
  A14: l`1=g`1+k`1-e`1 & l`2=g`2+k`2-e`2 & l`3=g`3+k`3-e`3
                                                      by A2,A4,A6,A12,Th5;
  A15: [b,c,q,r]=[f,k,h,l] by A8,A10;
    1_ F*(f`1-k`1)=h`1-l`1 & 1_ F*(f`2-k`2)=h`2-l`2 & 1_ F*(f`3-k`3)=h`3-l`3
                                                      by A13,A14,Lm10;
  hence thesis by A15,Th2;
 end;

::
::              2. DEFINITION OF A FANO-DESARGUES SPACE
::

definition let IT be ParSp;
 attr IT is FanodesSp-like means
 :Def1: (ex a,b,c being Element of IT st not a,b '||' a,c)
        & (for a,b,c,d being Element of IT holds
           b,c '||' a,d & a,b '||' c,d & a,c '||' b,d implies a,b '||' a,c)
        & (for a,b,c,p,q,r being Element of IT holds
          not a,p '||' a,b & not a,p '||' a,c & a,p '||' b,q & a,p '||'
 c,r & a,b '||' p,q &
                                              a,c '||' p,r implies b,c '||'
 q,r);
end;

definition
 cluster strict FanodesSp-like ParSp;
  existence
  proof consider FF being Fanoian Field;
    reconsider FdSp=MPS(FF) as ParSp by Th1;
      1_ FF+1_ FF<>0.FF by VECTSP_1:def 29;
    then (ex a,b,c being Element of FdSp st not a,b '||' a,c)
    & (for a,b,c,d being Element of FdSp holds
       b,c '||' a,d & a,b '||' c,d & a,c '||' b,d implies a,b '||' a,c)
    & (for a,b,c,p,q,r being Element of FdSp holds
      not a,p '||' a,b & not a,p '||' a,c & a,p '||' b,q & a,p '||' c,r & a,b
'||' p,q &
                                          a,c '||' p,r implies b,c '||' q,r)
                                           by Th6,Th7,Th8;
    then FdSp is FanodesSp-like by Def1;
   hence thesis;
  end;
end;

definition
 mode FanodesSp is FanodesSp-like ParSp;
end;

reserve FdSp for FanodesSp;
reserve a,b,c,d,p,q,r,s,o,x,y for Element of FdSp;

::
::           3. AXIOMS OF A FANO-DESARGUES PARALLELITY SPACE
::

canceled 4;

theorem
Th13: p<>q implies ex r st not p,q '||' p,r
 proof
  assume A1:p<>q;
  consider a,b,c such that A2: not a,b '||' a,c by Def1;
     not p,q '||' p,a or not p,q '||' p,b or not p,q '||' p,c
     by A1,A2,PARSP_1:56;
  hence thesis;
 end;

definition let FdSp,a,b,c;
 pred a,b,c is_collinear means
 :Def2: a,b '||' a,c;
end;

canceled;

theorem
Th15: a,b,c is_collinear implies a,c,b is_collinear & c,b,a is_collinear &
  b,a,c is_collinear & b,c,a is_collinear & c,a,b is_collinear
 proof assume a,b,c is_collinear;
  then a,b '||' a,c by Def2;
  then a,c '||' a,b & c,b '||' c,a & b,a '||' b,c & b,c '||' b,a & c,a '||'
 c,b by PARSP_1:41;
  hence thesis by Def2;
 end;

canceled;

theorem
Th17: not a,b,c is_collinear & a,b '||' p,q & a,c '||'
 p,r & p<>q & p<>r implies
      not p,q,r is_collinear
proof assume A1: not a,b,c is_collinear & a,b '||' p,q & a,c '||'
 p,r & p<>q & p<>r;
  then not a,b '||' a,c by Def2; then not p,q '||' p,r by A1,PARSP_1:48;
  hence thesis by Def2;
 end;

theorem
Th18: a=b or b=c or c =a implies a,b,c is_collinear
 proof assume a=b or b=c or c =a;
  then a,b '||' a,c by PARSP_1:42;
  hence thesis by Def2;
 end;

theorem
Th19: a<>b & a,b,p is_collinear & a,b,q is_collinear & a,b,r is_collinear
  implies p,q,r is_collinear
 proof assume a<>b & a,b,p is_collinear & a,b,q is_collinear &
   a,b,r is_collinear;
  then a,b '||' a,p & a,b '||' a,q & a,b '||' a,r & a<>b by Def2;
  then a<>b & a,b '||' p,q & a,b '||' p,r by PARSP_1:53;
  then p,q '||' p,r by PARSP_1:def 12;
  hence thesis by Def2;
 end;

theorem
Th20: p<>q implies ex r st not p,q,r is_collinear
 proof assume p<>q;
  then consider r such that A1: not p,q '||' p,r by Th13;
    not p,q,r is_collinear by A1,Def2;
  hence thesis;
 end;

theorem
Th21: a,b,c is_collinear & a,b,d is_collinear implies a,b '||' c,d
 proof assume a,b,c is_collinear & a,b,d is_collinear;
  then a,b '||' a,c & a,b '||' a,d by Def2;
  hence thesis by PARSP_1:53;
 end;

theorem
Th22: not a,b,c is_collinear & a,b '||' c,d implies not a,b,d is_collinear
 proof assume A1: not a,b,c is_collinear & a,b '||' c,d;
  A2: now assume a=d; then a,b '||' a,c by A1,PARSP_1:40;
       hence contradiction by A1,Def2;
      end;
     now assume c <>d & a<>d;
       then c <>d & a<>d & not a,b,c is_collinear & a,b '||' c,d &
       a,c '||' c,a & c <>a & a<>b by A1,Th18,PARSP_1:42;
       then not c,d,a is_collinear & d,c '||' a,b &
                     d,a '||' a,d & a<>b & a<>d by Th17,PARSP_1:40,42;
       then not d,c,a is_collinear & d,c '||' a,b & d,a '||' a,d & a<>b & a<>d
         by Th15;
       hence thesis by Th17;
      end;
  hence thesis by A1,A2;
 end;

theorem
Th23: not a,b,c is_collinear & a,b '||' c,d & c <>d implies
  not a,b,x is_collinear or not c,d,x is_collinear
 proof assume A1: not a,b,c is_collinear & a,b '||' c,d & c <>d;
    now assume c,d,x is_collinear;
     then c,d '||' c,x by Def2;
     then a,b '||' c,x by A1,PARSP_1:43;
     hence thesis by A1,Th22;
    end;
  hence thesis;
 end;

theorem
   not o,a,b is_collinear implies not o,a,x is_collinear or
   not o,b,x is_collinear or o=x
 proof assume A1: not o,a,b is_collinear;
     now assume o,a,x is_collinear & o,b,x is_collinear;
      then not a,b,o is_collinear & a,o,x is_collinear & o,b,x is_collinear &
        b,o,x is_collinear by A1,Th15;
      then not a,b '||' a,o & a,o '||' a,x & b,o '||' b,x by Def2;
      hence thesis by PARSP_1:51;
     end;
  hence thesis;
 end;

theorem
   o<>a & o<>b & o,a,b is_collinear & o,a,p is_collinear &
   o,b,q is_collinear implies a,b '||' p,q
 proof assume A1: o<>a & o<>b & o,a,b is_collinear & o,a,p is_collinear &
   o,b,q is_collinear;
  A2: now assume o=p;
       then p<>b & p,a '||' p,b & p,b '||' p,q by A1,Def2;
       then p<>b & a,b '||' p,b & p,b '||' p,q by PARSP_1:41;
       hence thesis by PARSP_1:43;
      end;
     now assume o<>p;
       then o<>p & o<>a & o<>b & o,a '||' o,b & o,a '||' o,p & o,b '||'
 o,q by A1,Def2;
       then o<>p & o<>b & o,b '||' a,b & o,b '||' o,p & o,b '||' o,q
                                                    by PARSP_1:41,def 12;
       then o<>p & o<>b & o,b '||' a,b & o,b '||' o,p & o,p '||'
 o,q by PARSP_1:def 12;
       then o<>p & a,b '||' o,p & o,p '||' p,q by PARSP_1:41,def 12;
       hence thesis by PARSP_1:43;
      end;
  hence thesis by A2;
 end;

theorem
   not a,b '||' c,d & a,b,p is_collinear & a,b,q is_collinear &
   c,d,p is_collinear & c,d,q is_collinear implies p=q
 proof assume not a,b '||' c,d & a,b,p is_collinear & a,b,q is_collinear &
   c,d,p is_collinear & c,d,q is_collinear;
  then not a,b '||' c,d & a,b '||' p,q & c,d '||' p,q by Th21;
  then not a,b '||' c,d & p,q '||' a,b & p,q '||' c,d by PARSP_1:40;
  hence thesis by PARSP_1:def 12;
 end;

theorem
   a<>b & a,b,c is_collinear & a,b '||' c,d implies a,c '||' b,d
 proof assume A1: a<>b & a,b,c is_collinear & a,b '||' c,d;
     now assume b<>c; then b<>c & a,b '||' a,c by A1,Def2;
       then b<>c & b,c '||' a,c & a,b '||' c,b by PARSP_1:41;
       then b<>c & b,c '||' a,c & c,b '||' c,d by A1,PARSP_1:def 12;
       then b<>c & b,c '||' a,c & b,c '||' b,d by PARSP_1:41;
       hence thesis by PARSP_1:def 12;
      end;
  hence thesis by A1;
 end;

theorem
   a<>b & a,b,c is_collinear & a,b '||' c,d implies c,b '||' c,d
 proof assume A1: a<>b & a,b,c is_collinear & a,b '||' c,d;
     now assume a<>c; then a<>c & a,b '||' a,c by A1,Def2;
       then a<>c & a,c '||' c,b & a,c '||' c,d by A1,PARSP_1:41,def 12;
       hence thesis by PARSP_1:def 12;
      end;
  hence thesis by A1;
 end;

theorem
   not o,a,c is_collinear & o,a,b is_collinear & o,c,p is_collinear &
       o,c,q is_collinear & a,c '||' b,p & a,c '||' b,q implies p=q
 proof
  assume not o,a,c is_collinear & o,a,b is_collinear & o,c,p is_collinear &
    o,c,q is_collinear & a,c '||' b,p & a,c '||' b,q;
  then not o,a '||' o,c & o,a '||' o,b & o,c '||' o,p & o,c '||' o,q &
                                              a,c '||' b,p & a,c '||'
 b,q by Def2;
  hence thesis by PARSP_1:52;
 end;

theorem
   a<>b & a,b,c is_collinear & a,b,d is_collinear implies a,c,d is_collinear
 proof assume a<>b & a,b,c is_collinear & a,b,d is_collinear;
  then a<>b & a,b '||' a,c & a,b '||' a,d by Def2;
  then a,c '||' a,d by PARSP_1:def 12;
  hence thesis by Def2;
 end;

theorem
   a,b,c is_collinear & a,c,d is_collinear & a<>c implies b,c,d is_collinear
 proof assume a,b,c is_collinear & a,c,d is_collinear & a<>c;
  then a<>c & a,c,b is_collinear & a,c,c is_collinear & a,c,d is_collinear
    by Th15,Th18;
  hence thesis by Th19;
 end;

definition let FdSp,a,b,c,d;
 pred parallelogram a,b,c,d means
 :Def3: not a,b,c is_collinear & a,b '||' c,d & a,c '||' b,d;
end;

canceled 2;

theorem
Th34: parallelogram a,b,c,d implies a<>b & b<>c & c <>a & a<>d & b<>d & c <>d
 proof assume A1: parallelogram a,b,c,d; then A2: not a,b,c is_collinear
   by Def3;
  A3: now assume a=d; then a,b '||' c,a by A1,Def3;
       then a,b '||' a,c & not a,b,c is_collinear by A1,Def3,PARSP_1:40;
       hence contradiction by Def2;
      end;
  A4: now assume b=d; then a,b '||' c,b by A1,Def3;
       then b,a '||' b,c by PARSP_1:40;
       then a,b '||' a,c & not a,b,c is_collinear by A1,Def3,PARSP_1:41;
       hence contradiction by Def2;
      end;
     now assume c =d;
       then a,c '||' b,c by A1,Def3; then c,a '||' c,b by PARSP_1:40;
       then a,b '||' a,c & not a,b,c is_collinear by A1,Def3,PARSP_1:41;
       hence contradiction by Def2;
      end;
  hence thesis by A2,A3,A4,Th18;
 end;

theorem
Th35: parallelogram a,b,c,d implies
  not a,b,c is_collinear & not b,a,d is_collinear & not c,d,a is_collinear &
    not d,c,b is_collinear
 proof assume A1: parallelogram a,b,c,d;
  then A2: not a,b,c is_collinear & a,b '||' b,a & a,c '||' b,d & b<>a & b<>d
    by Def3,Th34,PARSP_1:42;

A3:  not a,b,c is_collinear & a,b '||' c,d & a,c '||' c,a & c <>d & c <>a
                                             by A1,Def3,Th34,PARSP_1:42;

    a,b '||' c,d & a,c '||' b,d by A1,Def3;
  then not a,b,c is_collinear & a,b '||' d,c & a,c '||' d,b & d<>c & d<>b
                                             by A1,Def3,Th34,PARSP_1:40;
  hence thesis by A2,A3,Th17;
 end;

theorem
Th36: parallelogram a,b,c,d implies
  not a,b,c is_collinear & not b,a,d is_collinear & not c,d,a is_collinear &
  not d,c,b is_collinear & not a,c,b is_collinear & not b,a,c is_collinear &
  not b,c,a is_collinear & not c,a,b is_collinear & not c,b,a is_collinear &
  not b,d,a is_collinear & not a,b,d is_collinear & not a,d,b is_collinear &
  not d,a,b is_collinear & not d,b,a is_collinear & not c,a,d is_collinear &
  not a,c,d is_collinear & not a,d,c is_collinear & not d,a,c is_collinear &
  not d,c,a is_collinear & not d,b,c is_collinear & not b,c,d is_collinear &
  not b,d,c is_collinear & not c,b,d is_collinear & not c,d,b is_collinear
 proof
  assume A1: parallelogram a,b,c,d; then A2: not a,b,c is_collinear by Th35;
A3:  not b,a,d is_collinear by A1,Th35;
A4:  not c,d,a is_collinear by A1,Th35;
    not d,c,b is_collinear by A1,Th35;
  hence thesis by A2,A3,A4,Th15;
 end;

theorem
Th37: parallelogram a,b,c,d implies not a,b,x is_collinear or
  not c,d,x is_collinear
 proof assume parallelogram a,b,c,d;
   then not a,b,c is_collinear & a,b '||' c,d & c <>d
   by Def3,Th34;
  hence thesis by Th23;
 end;

theorem
Th38: parallelogram a,b,c,d implies parallelogram a,c,b,d
 proof assume parallelogram a,b,c,d;
  then not a,c,b is_collinear & a,b '||' c,d & a,c '||' b,d by Def3,Th36;
  hence thesis by Def3;
 end;

theorem
Th39: parallelogram a,b,c,d implies parallelogram c,d,a,b
 proof assume parallelogram a,b,c,d;
  then not c,d,a is_collinear & a,b '||' c,d & a,c '||' b,d by Def3,Th36;
  then not c,d,a is_collinear & c,d '||' a,b & c,a '||' d,b by PARSP_1:40;
  hence thesis by Def3;
 end;

theorem
Th40: parallelogram a,b,c,d implies parallelogram b,a,d,c
 proof assume A1: parallelogram a,b,c,d; then a,b '||' c,d & a,c '||' b,d
 by Def3;
  then b,a '||' d,c & b,d '||' a,c & not b,a,d is_collinear by A1,Th36,PARSP_1:
40;
  hence thesis by Def3;
 end;

theorem
Th41: parallelogram a,b,c,d implies parallelogram a,c,b,d &
  parallelogram c,d,a,b & parallelogram b,a,d,c & parallelogram c,a,d,b &
  parallelogram d,b,c,a & parallelogram b,d,a,c & parallelogram d,c,b,a
 proof assume A1: parallelogram a,b,c,d;
  then parallelogram a,c,b,d & parallelogram c,d,a,b &
  parallelogram b,a,d,c by Th38,Th39,Th40;
  then parallelogram c,a,d,b & parallelogram b,d,a,c & parallelogram d,c,b,a
  by Th38,Th39;
  hence thesis by A1,Th38;
 end;

theorem
Th42: not a,b,c is_collinear implies ex d st parallelogram a,b,c,d
 proof assume A1: not a,b,c is_collinear;
  consider d such that A2:(a,b '||' c,d & a,c '||' b,d) by PARSP_1:def 12;
    parallelogram a,b,c,d by A1,A2,Def3;
  hence thesis;
 end;

theorem
Th43: parallelogram a,b,c,p & parallelogram a,b,c,q implies p=q
 proof assume parallelogram a,b,c,p & parallelogram a,b,c,q;
  then not b,c,a is_collinear & a,b '||'c,p & a,c '||' b,p &
       a,b '||' c,q & a,c '||' b,q by Def3,Th36;
       then not b,c '||' b,a & b,c '||' c,b & b,a '||' c,p & b,a '||' c,q &
            c,a '||' b,p & c,a '||' b,q by Def2,PARSP_1:40,42;
  hence thesis by PARSP_1:52;
 end;

theorem
Th44: parallelogram a,b,c,d implies not a,d '||' b,c
 proof assume A1: parallelogram a,b,c,d; then not a,b,c is_collinear by Def3;
  then not a,b '||' a,c & a,b '||' c,d & a,c '||' b,d by A1,Def2,Def3;
  then not b,c '||' a,d by Def1; hence thesis by PARSP_1:36;
 end;

theorem
Th45: parallelogram a,b,c,d implies not parallelogram a,b,d,c
 proof assume parallelogram a,b,c,d; then not a,d '||' b,c by Th44;
  hence thesis by Def3;
 end;

theorem
Th46: a<>b implies ex c st a,b,c is_collinear & c <>a & c <>b
 proof assume a<>b; then consider p such that A1: not a,b,p is_collinear
   by Th20;
  consider q such that A2: parallelogram a,b,p,q by A1,Th42;
     not p,q,b is_collinear by A2,Th36;
  then consider c such that A3: parallelogram p,q,b,c by Th42;
    p<>q & b<>c & a,b '||' p,q & p,q '||' b,c & p,b '||'
 q,c by A2,A3,Def3,Th34;
  then a,b '||' b,c & b<>c & not a,q '||' b,p & p,b '||' q,c by A2,Th44,PARSP_1
:43;
  then b,a '||' b,c & b<>c & not a,q '||' b,p & c,q '||' b,p by PARSP_1:40;
  then b,a,c is_collinear & b<>c & a<>c by Def2;
  then a,b,c is_collinear & c <>b & c <>a by Th15;
  hence thesis;
 end;

theorem
Th47: parallelogram a,p,b,q & parallelogram a,p,c,r implies b,c '||' q,r
 proof assume parallelogram a,p,b,q & parallelogram a,p,c,r;
  then not a,p,b is_collinear & not a,p,c is_collinear & a,p '||' b,q &
    a,b '||' p,q & a,p '||' c,r &
       a,c '||' p,r by Def3;
  then not a,p '||' a,b & not a,p '||' a,c & a,p '||' b,q & a,b '||' p,q & a,p
'||' c,r &
       a,c '||' p,r by Def2;
  hence thesis by Def1;
 end;

theorem
Th48: not b,q,c is_collinear & parallelogram a,p,b,q & parallelogram a,p,c,r
  implies parallelogram b,q,c,r
 proof assume not b,q,c is_collinear & parallelogram a,p,b,q &
   parallelogram a,p,c,r;
  then not b,q,c is_collinear & a<>p & a,p '||' b,q & a,p '||' c,r & b,c '||'
 q,r
                                                  by Def3,Th34,Th47;
  then not b,q,c is_collinear & b,q '||' c,r & b,c '||' q,r by PARSP_1:def 12;
  hence thesis by Def3;
 end;

theorem
Th49: a,b,c is_collinear & b<>c & parallelogram a,p,b,q &
  parallelogram a,p,c,r implies parallelogram b,q,c,r
 proof assume a,b,c is_collinear & b<>c & parallelogram a,p,b,q &
   parallelogram a,p,c,r;
  then a,b '||'a,c & not a,p,b is_collinear & a,p '||' b,q & b<>q & b<>c &
       parallelogram a,p,b,q & parallelogram a,p,c,r by Def2,Def3,Th34;
  then not a,p,b is_collinear & a,p '||' b,q & b<>q & b<>c & a,b '||' b,c &
       parallelogram a,p,b,q & parallelogram a,p,c,r by PARSP_1:41;
  then not b,q,c is_collinear & parallelogram a,p,b,q & parallelogram a,p,c,r
   by Th17;
  hence thesis by Th48;
 end;

theorem
Th50: parallelogram a,p,b,q & parallelogram a,p,c,r & parallelogram b,q,d,s
  implies c,d '||' r,s
 proof assume A1: parallelogram a,p,b,q & parallelogram a,p,c,r &
 parallelogram b,q,d,s;
  A2: now assume not b,q,c is_collinear;
       then parallelogram b,q,c,r & parallelogram b,q,d,s by A1,Th48;
       hence thesis by Th47;
      end;
  A3: now assume not a,p,d is_collinear;
       then not a,p,d is_collinear & parallelogram b,q,a,p &
        parallelogram b,q,d,s &
       parallelogram a,p,c,r by A1,Th41;
       then parallelogram a,p,d,s & parallelogram a,p,c,r by Th48;
       hence thesis by Th47;
      end;
      now assume A4: b,q,c is_collinear & a,p,d is_collinear;
           a<>b by A1,Th34;
        then consider x such that A5: a,b,x is_collinear & x<>a & x<>b
          by Th46;
        A6: a,b '||' a,x by A5,Def2;
        A7: not a,p,b is_collinear by A1,Th36;
        A8: a,p '||' a,p by PARSP_1:42;
           a<>p by A1,Th34;
        then not a,p,x is_collinear by A5,A6,A7,A8,Th17;
        then consider y such that A9: parallelogram a,p,x,y by Th42;
        A10: parallelogram b,q,x,y by A1,A5,A9,Th49;
        then not x,y,c is_collinear & not x,y,d is_collinear by A4,A9,Th37;
        then parallelogram x,y,c,r & parallelogram x,y,d,s by A1,A9,A10,Th48;
        hence thesis by Th47;
       end;
   hence thesis by A2,A3;
 end;

theorem
Th51: a<>b implies ex c,d st parallelogram a,b,c,d
 proof assume a<>b; then consider c such that
 A1: not a,b,c is_collinear by Th20;
     ex d st parallelogram a,b,c,d by A1,Th42;
  hence thesis;
 end;

theorem
   a<>d implies ex b,c st parallelogram a,b,c,d
 proof assume a<>d; then consider b such that A1:
 not a,d,b is_collinear by Th20;
     not b,a,d is_collinear by A1,Th15;
  then consider c such that A2: parallelogram b,a,d,c by Th42;
    parallelogram a,b,c,d by A2,Th41;
  hence thesis;
 end;

definition let FdSp,a,b,r,s;
 pred a,b congr r,s means
 :Def4: (a=b & r=s) or (ex p,q st parallelogram p,q,a,b &
   parallelogram p,q,r,s);
end;

canceled 2;

theorem
Th55: a,a congr b,c implies b=c
 proof assume a,a congr b,c;
  then (a=a & b=c) or (ex p,q st parallelogram p,q,a,a &
  parallelogram p,q,b,c) by Def4;
  hence thesis by Th34;
 end;

theorem
   a,b congr c,c implies a=b
 proof assume a,b congr c,c;
  then (a=b & c =c) or (ex p,q st parallelogram p,q,a,b &
  parallelogram p,q,c,c) by Def4;
  hence thesis by Th34;
 end;

theorem
   a,b congr b,a implies a=b
 proof assume A1:a,b congr b,a;
    now assume a<>b;
   then ex p,q st parallelogram p,q,a,b & parallelogram p,q,b,a by A1,Def4;
   hence contradiction by Th45;
  end;
  hence thesis;
 end;

theorem
Th58: a,b congr c,d implies a,b '||' c,d
 proof assume A1:a,b congr c,d;
     now assume a<>b;
       then consider p,q such that A2: parallelogram p,q,a,b &
       parallelogram p,q,c,d by A1,Def4;
         p<>q & p,q '||' a,b & p,q '||' c,d by A2,Def3,Th34;
       hence thesis by PARSP_1:def 12;
      end;
  hence thesis by PARSP_1:37;
 end;

theorem
Th59: a,b congr c,d implies a,c '||' b,d
 proof assume A1: a,b congr c,d;
  A2: now assume a=b;
       then a=b & c =d by A1,Th55;
       hence thesis by PARSP_1:42;
      end;
     now assume a<>b;
       then ex p,q st parallelogram p,q,a,b & parallelogram p,q,c,d
       by A1,Def4;
       hence thesis by Th47;
      end;
  hence thesis by A2;
 end;

theorem
Th60: a,b congr c,d & not a,b,c is_collinear implies parallelogram a,b,c,d
 proof assume a,b congr c,d & not a,b,c is_collinear;
  then not a,b,c is_collinear & a,b '||' c,d & a,c '||' b,d by Th58,Th59;
  hence thesis by Def3;
 end;

theorem
Th61: parallelogram a,b,c,d implies a,b congr c,d
 proof assume A1: parallelogram a,b,c,d;
  then a<>c by Th34;
  then consider p such that A2: a,c,p is_collinear & a<>p & c <>p by Th46;
    not a,c,b is_collinear & a,c '||' a,p & a,b '||' a,b & a<>p & a<>b
                                     by A1,A2,Def2,Th34,Th36,PARSP_1:42;
  then not a,p,b is_collinear by Th17;
  then consider q such that A3: parallelogram a,p,b,q by Th42;
     parallelogram a,b,p,q by A3,Th41;
  then parallelogram c,d,p,q by A1,A2,Th49;
  then parallelogram p,q,a,b & parallelogram p,q,c,d by A3,Th41;
  hence thesis by Def4;
 end;

theorem
Th62: a,b congr c,d & a,b,c is_collinear & parallelogram r,s,a,b implies
parallelogram r,s,c,d
 proof assume A1: a,b congr c,d & a,b,c is_collinear & parallelogram r,s,a,b;
     now assume A2: a<>b;
       then consider p,q such that A3: parallelogram p,q,a,b &
       parallelogram p,q,c,d by A1,Def4;
       A4: not r,s,c is_collinear by A1,Th37;
         a<>b & r,s '||' a,b & a,b '||' c,d by A1,A2,Def3,Th58;
       then A5: r,s '||' c,d by PARSP_1:43;
         parallelogram a,b,r,s & parallelogram a,b,p,q &
       parallelogram p,q,c,d by A1,A3,Th41;
       then r,c '||' s,d by Th50;
       hence thesis by A4,A5,Def3;
      end;
  hence thesis by A1,Th34;
 end;

theorem
   a,b congr c,x & a,b congr c,y implies x=y
 proof assume A1: a,b congr c,x & a,b congr c,y;
  A2: now assume a=b;
       then c =x & c =y by A1,Th55;
       hence thesis;
      end;
  A3: now assume A4: a<>b & a,b,c is_collinear;
       then consider p,q such that A5: parallelogram a,b,p,q by Th51;
         parallelogram p,q,a,b by A5,Th41; then parallelogram p,q,c,x &
       parallelogram p,q,c,y by A1,A4,Th62;
       hence thesis by Th43;
      end;
     now assume a<>b & not a,b,c is_collinear;
       then parallelogram a,b,c,x & parallelogram a,b,c,y by A1,Th60;
       hence thesis by Th43;
      end;
  hence thesis by A2,A3;
 end;

theorem
   ex d st a,b congr c,d
 proof
  A1:now assume a=b; then a,b congr c,c by Def4;
      hence thesis;
     end;
  A2: now assume A3: a<>b & a,b,c is_collinear;
       then consider p,q such that A4: parallelogram a,b,p,q by Th51;
       A5: parallelogram p,q,a,b & not p,q,c is_collinear by A3,A4,Th37,Th41;
       then consider d such that A6: parallelogram p,q,c,d by Th42;
         a,b congr c,d by A5,A6,Def4;
       hence thesis;
      end;
     now assume a<>b & not a,b,c is_collinear;
       then consider d such that A7: parallelogram a,b,c,d by Th42;
         a,b congr c,d by A7,Th61;
       hence thesis;
      end;
  hence thesis by A1,A2;
 end;

canceled;

theorem
Th66: a,b congr a,b
 proof
    now assume a<>b;
   then consider p,q such that A1: parallelogram a,b,p,q by Th51;
     parallelogram p,q,a,b & parallelogram p,q,a,b by A1,Th41;
   hence thesis by Def4;
  end;
  hence thesis by Def4;
 end;

theorem
Th67: r,s congr a,b & r,s congr c,d implies a,b congr c,d
 proof assume A1: r,s congr a,b & r,s congr c,d;
  A2: now assume r=s;
       then a=b & c =d by A1,Th55;
       hence thesis by Def4;
      end;
  A3: now assume A4: r<>s & r,s,a is_collinear;
       then consider p,q such that
       A5: parallelogram p,q,r,s & parallelogram p,q,c,d by A1,Def4;
         parallelogram p,q,a,b by A1,A4,A5,Th62;
       hence thesis by A5,Def4;
      end;
  A6: now assume A7: r<>s & r,s,c is_collinear;
       then consider p,q such that
       A8: parallelogram p,q,r,s & parallelogram p,q,a,b by A1,Def4;
         parallelogram p,q,c,d by A1,A7,A8,Th62;
       hence thesis by A8,Def4;
      end;
     now assume r<>s & not r,s,a is_collinear & not r,s,c is_collinear;
       then parallelogram r,s,a,b & parallelogram r,s,c,d by A1,Th60;
       hence thesis by Def4;
      end;
  hence thesis by A2,A3,A6;
 end;

theorem
   a,b congr c,d implies c,d congr a,b
 proof assume a,b congr c,d;
  then a,b congr c,d & a,b congr a,b by Th66;
  hence thesis by Th67;
 end;

theorem
   a,b congr c,d implies b,a congr d,c
 proof assume A1: a,b congr c,d;
  A2: now assume a=b;
       then a=b & c =d by A1,Th55;
       hence thesis by Def4;
      end;
     now assume a<>b;
       then consider p,q such that
       A3: parallelogram p,q,a,b & parallelogram p,q,c,d by A1,Def4;
         parallelogram q,p,b,a & parallelogram q,p,d,c by A3,Th41;
       hence thesis by Def4;
      end;
  hence thesis by A2;
 end;

Back to top