The Mizar article:

Ordered Affine Spaces Defined in Terms of Directed Parallelity --- Part I

by
Henryk Oryszczyszyn, and
Krzysztof Prazmowski

Received May 4, 1990

Copyright (c) 1990 Association of Mizar Users

MML identifier: DIRAF
[ MML identifier index ]


environ

 vocabulary RELAT_1, ANALOAF, PARSP_1, INCSP_1, REALSET1, DIRAF;
 notation TARSKI, XBOOLE_0, ZFMISC_1, SUBSET_1, DOMAIN_1, RELSET_1, STRUCT_0,
      ANALOAF, REALSET1;
 constructors DOMAIN_1, ANALOAF, MEMBERED, XBOOLE_0;
 clusters ANALOAF, RELSET_1, STRUCT_0, SUBSET_1, MEMBERED, ZFMISC_1, XBOOLE_0;
 requirements SUBSET, BOOLE;
 definitions ANALOAF, STRUCT_0;
 theorems ANALOAF, RELAT_1, ZFMISC_1, DOMAIN_1, REALSET1;
 schemes RELSET_1;

begin

 reserve x,y for set;
 reserve X for non empty set;
 reserve a,b,c,d for Element of X;

definition let X;
 let R be Relation of [:X,X:];
  func lambda(R) -> Relation of [:X,X:] means
:Def1: for a,b,c,d being Element of X
   holds [[a,b],[c,d]] in it iff ([[a,b],[c,d]] in R or [[a,b],[d,c]] in R);
existence
 proof set XX = [:X,X:];
   defpred P[set,set] means ex a,b,c,d being Element of X
      st $1=[a,b] & $2=[c,d] & ([[a,b],[c,d]] in R or [[a,b],[d,c]] in R);
  consider P being Relation of XX,XX such that
A1: for x,y holds [x,y] in P iff
      x in XX & y in XX & P[x,y] from Rel_On_Set_Ex;
  take P;
  let a,b,c,d be Element of X;
      [[a,b],[c,d]] in P implies
       ([[a,b],[c,d]] in R or [[a,b],[d,c]] in R)
       proof assume [[a,b],[c,d]] in P;
        then consider a',b',c',d' being Element of X such that
        A2: [a,b]=[a',b'] & [c,d]=[c',d'] and
        A3:  ([[a',b'],[c',d']] in R or [[a',b'],[d',c']] in R) by A1;
          a=a' & b=b' & c = c' & d=d' by A2,ZFMISC_1:33;
        hence thesis by A3;
       end;
    hence thesis by A1; end;
uniqueness
 proof set XX = [:X,X:];
 let P,Q be Relation of [:X,X:]
   such that
 A4:  for a,b,c,d being Element of X holds
 [[a,b],[c,d]] in P iff ([[a,b],[c,d]] in R or [[a,b],[d,c]] in R) and
 A5: for a,b,c,d being Element of X holds
 [[a,b],[c,d]] in Q iff ([[a,b],[c,d]] in R or [[a,b],[d,c]] in R);
   for x,y holds [x,y] in P iff [x,y] in Q
  proof let x,y;
   A6: now assume A7: [x,y] in P; then A8: x in XX & y in XX by ZFMISC_1:106;
    then A9: ex a,b st x=[a,b] by DOMAIN_1:9;
    consider c,d such that A10: y=[c,d] by A8,DOMAIN_1:9;
      [x,y] in P iff [x,y] in R or [x,[d,c]] in R by A4,A9,A10;
    hence [x,y] in Q by A5,A7,A9,A10;
    end;
      now assume A11: [x,y] in Q; then A12: x in XX & y in XX by ZFMISC_1:106;
    then A13: ex a,b st x=[a,b] by DOMAIN_1:9;
    consider c,d such that A14: y=[c,d] by A12,DOMAIN_1:9;
      [x,y] in Q iff [x,y] in R or [x,[d,c]] in R by A5,A13,A14;
    hence [x,y] in P by A4,A11,A13,A14;
    end;
   hence thesis by A6;
   end;
  hence thesis by RELAT_1:def 2;
 end;
end;

definition let S be non empty AffinStruct;
 func Lambda(S) -> strict AffinStruct equals
 :Def2:  AffinStruct (# the carrier of S, lambda(the CONGR of S) #);
 correctness;
 end;

definition let S be non empty AffinStruct;
 cluster Lambda S -> non empty;
 coherence
  proof
      Lambda S = AffinStruct (# the carrier of S, lambda(the CONGR of S) #)
                      by Def2;
   hence the carrier of Lambda S is non empty;
  end;
end;

reserve S for OAffinSpace;
reserve a,b,c,d,p,q,r,x,y,z,t,u,w for Element of S;

canceled 3;

theorem Th4:
 x,y // x,y
  proof x,y // y,y by ANALOAF:def 5; hence x,y // x,y by ANALOAF:def 5;
  end;
 Lm1: x,y // z,t implies z,t // x,y
  proof assume A1: x,y // z,t;
      now assume A2: x<>y; x,y // x,y & x,y // z,t by A1,Th4;
     hence z,t // x,y by A2,ANALOAF:def 5; end;
   hence thesis by ANALOAF:def 5;
  end;

theorem Th5:
 x,y // z,t implies y,x // t,z & z,t // x,y & t,z // y,x
  proof assume x,y // z,t;
   hence y,x // t,z & z,t // x,y by Lm1,ANALOAF:def 5;
   hence t,z // y,x by ANALOAF:def 5;
  end;

theorem Th6:
 z<>t & x,y // z,t & z,t // u,w implies x,y // u,w
  proof assume A1: z<>t; assume x,y // z,t & z,t // u,w;
    then z,t // x,y & z,t // u,w by Th5;
   hence thesis by A1,ANALOAF:def 5;
  end;

theorem Th7:
 x,x // y,z & y,z // x,x
  proof y,z // x,x by ANALOAF:def 5; hence thesis by Th5;
  end;

theorem Th8:
 x,y // z,t & x,y // t,z implies x=y or z=t
  proof assume that A1: x,y // z,t & x,y // t,z and
            A2: x<>y and A3: z<>t;
      z,t // t,z by A1,A2,ANALOAF:def 5;
   hence contradiction by A3,ANALOAF:def 5;
  end;

theorem Th9:
 x,y // x,z iff x,y // y,z or x,z // z,y
  proof
      now assume x,y // y,z or x,z // z,y;
      then x,y // x,z or x,z // x,y by ANALOAF:def 5;
     hence x,y // x,z by Th5; end;
   hence thesis by ANALOAF:def 5;
  end;

definition let S be non empty AffinStruct;
           let a,b,c be Element of S;
 pred Mid a,b,c means
  :Def3: a,b // b,c;
end;

canceled;

theorem Th11:
 x,y // x,z iff Mid x,y,z or Mid x,z,y
  proof x,y // x,z iff x,y // y,z or x,z // z,y by Th9;
   hence thesis by Def3;
  end;

theorem Th12:
 Mid a,b,a implies a=b
  proof assume Mid a,b,a;
    then a,b // b,a by Def3;
    hence a=b by ANALOAF:def 5;
  end;

theorem
   Mid a,b,c implies Mid c,b,a
  proof assume Mid a,b,c;
    then a,b // b,c by Def3;
    then c,b // b,a by Th5;
   hence Mid c,b,a by Def3;
  end;

theorem
   Mid x,x,y & Mid x,y,y
  proof
      x,x // x,y & x,y // y,y by Th7;
   hence Mid x,x,y & Mid x,y,y by Def3;
  end;

theorem
   Mid a,b,c & Mid a,c,d implies Mid b,c,d
  proof assume A1: Mid a,b,c & Mid a,c,d;
      now assume a<>c;
      then a<>c & a,b // b,c & a,c // c,d by A1,Def3;
      then a<>c & a,b // b,c & a,b // a,c & a,c // c,d by ANALOAF:def 5;
      then a<>c & (b,c // a,c or a=b) & a,c // c,d by ANALOAF:def 5;
      then b,c // c,d by Th6;
     hence Mid b,c,d by Def3;
    end;
   hence thesis by A1,Th12;
 end;

theorem
   b<>c & Mid a,b,c & Mid b,c,d implies Mid a,c,d
  proof assume that
    A1: b<>c and
    A2: Mid a,b,c and A3: Mid b,c,d;
       now assume A4: a<>b;
          A5: a,b // b,c & b,c // c,d by A2,A3,Def3;
          then A6: a,b // c,d by A1,Th6; a,b // a,c by A5,ANALOAF:def 5;
          then a,c // c,d by A4,A6,ANALOAF:def 5;
         hence Mid a,c,d by Def3;
        end;
   hence Mid a,c,d by A3;
  end;

theorem Th17:
 ex z st Mid x,y,z & y<>z
  proof consider z such that
    A1: x,y // y,z and x,y // y,z and A2: y<>z by ANALOAF:def 5;
      Mid x,y,z by A1,Def3;
   hence thesis by A2;
  end;

theorem
   Mid x,y,z & Mid y,x,z implies x=y
  proof assume A1: Mid x,y,z & Mid y,x,z;
    then x,y // y,z & y,x // x,z by Def3;
    then A2: x,y // x,z & x,y // z,x by ANALOAF:def 5;
      x=z implies x=y by A1,Th12;
   hence x=y by A2,Th8;
end;

theorem
   x<>y & Mid x,y,z & Mid x,y,t implies Mid y,z,t or Mid y,t,z
  proof assume A1: x<>y; assume Mid x,y,z & Mid x,y,t;
    then x,y // y,z & x,y // y,t by Def3;
    then y,z // y,t by A1,ANALOAF:def 5;
   hence thesis by Th11;
  end;

theorem
   x<>y & Mid x,y,z & Mid x,y,t implies Mid x,z,t or Mid x,t,z
  proof assume A1: x<>y; assume Mid x,y,z & Mid x,y,t;
    then x,y // y,z & x,y // y,t by Def3;
    then x,y // x,z & x,y // x,t by ANALOAF:def 5;
    then x,z // x,t by A1,ANALOAF:def 5;
   hence thesis by Th11;
  end;

theorem
   Mid x,y,t & Mid x,z,t implies Mid x,y,z or Mid x,z,y
  proof assume A1: Mid x,y,t & Mid x,z,t;
    then A2: x,y // y,t & x,z // z,t by Def3;
      now assume A3: x<>t; x,y // x,t & x,z // x,t by A2,ANALOAF:def 5;
      then x,y // x,t & x,t // x,z by Th5;
      then x,y // x,z by A3,Th6;
     hence thesis by Th11;
    end;
   hence thesis by A1,Th12;
  end;

definition let S be non empty AffinStruct;
           let a,b,c,d be Element of S;
 pred a,b '||' c,d means
  :Def4: a,b // c,d or a,b // d,c;
end;

canceled;

theorem
    a,b '||' c,d iff [[a,b],[c,d]] in lambda(the CONGR of S)
  proof
   thus a,b '||' c,d implies [[a,b],[c,d]] in lambda(the CONGR of S)
    proof assume a,b // c,d or a,b // d,c;
     then [[a,b],[c,d]] in the CONGR of S or
            [[a,b],[d,c]] in the CONGR of S by ANALOAF:def 2;
     hence thesis by Def1; end;
   assume [[a,b],[c,d]] in lambda(the CONGR of S);
   then [[a,b],[c,d]] in the CONGR of S or [[a,b],[d,c]] in the CONGR of S by
Def1;
   hence a,b // c,d or a,b // d,c by ANALOAF:def 2;
  end;

theorem Th24:
 x,y '||' y,x & x,y '||' x,y
  proof x,y // x,y by Th4;
    hence thesis by Def4;
  end;

theorem Th25:
 x,y '||' z,z & z,z '||' x,y
  proof
      x,y // z,z & z,z // x,y by Th7;
    hence thesis by Def4;
  end;

Lm2: x<>y & x,y '||' z,t & x,y '||' u,w implies z,t '||' u,w
  proof assume that
    A1: x<>y and
    A2: x,y '||' z,t & x,y '||' u,w;
    A3: x,y // u,w or x,y // w,u by A2,Def4;
    A4: now assume x,y // z,t;
          then z,t // u,w or z,t // w,u by A1,A3,ANALOAF:def 5;
         hence z,t '||' u,w by Def4;
        end;
      now assume x,y // t,z;
      then t,z // u,w or t,z // w,u by A1,A3,ANALOAF:def 5;
      then z,t // w,u or z,t // u,w by ANALOAF:def 5;
     hence z,t '||' u,w by Def4;
    end;
   hence thesis by A2,A4,Def4;
  end;

theorem Th26:
 x,y '||' x,z implies y,x '||' y,z
  proof assume A1: x,y '||' x,z;
    A2: now assume A3: x,y // x,z;
          A4: now assume x,y // y,z; then y,x // z,y by ANALOAF:def 5;
               hence y,x '||' y,z by Def4;
              end;
            now assume x,z // z,y;
            then y,z // z,x by Th5;
            then y,z // y,x by ANALOAF:def 5;
            then y,x // y,z by Th5;
           hence y,x '||' y,z by Def4;
          end;
         hence y,x '||' y,z by A3,A4,ANALOAF:def 5;
        end;
      now assume x,y // z,x; then y,x // x,z by ANALOAF:def 5;
      then y,x // y,z by ANALOAF:def 5;
     hence y,x '||' y,z by Def4; end;
   hence thesis by A1,A2,Def4;
  end;

theorem Th27:
  x,y '||' z,t implies x,y '||' t,z & y,x '||' z,t & y,x '||' t,z &
        z,t '||' x,y & z,t '||' y,x & t,z '||' x,y & t,z '||' y,x
  proof assume x,y '||' z,t;
    then A1: x,y // z,t or x,y // t,z by Def4;
    hence x,y '||' t,z by Def4;
      y,x // t,z or y,x // z,t by A1,ANALOAF:def 5;
    hence y,x '||' z,t & y,x '||' t,z by Def4;
      z,t // x,y or z,t // y,x by A1,Th5;
    hence z,t '||' x,y & z,t '||' y,x by Def4;
      t,z // y,x or t,z // x,y by A1,Th5;
    hence t,z '||' x,y & t,z '||' y,x by Def4;
  end;

theorem Th28:
  a<>b & ((a,b '||' x,y & a,b '||' z,t) or (a,b '||' x,y & z,t '||' a,b) or
        (x,y '||' a,b & z,t '||' a,b) or (x,y '||' a,b & a,b '||' z,t))
        implies x,y '||' z,t
  proof assume a<>b & ((a,b '||' x,y & a,b '||' z,t) or
                        (a,b '||' x,y & z,t '||' a,b) or
                       (x,y '||' a,b & z,t '||' a,b) or
                       (x,y '||' a,b & a,b '||' z,t));
    then a<>b & a,b '||' x,y & a,b '||' z,t by Th27;
   hence thesis by Lm2;
  end;

theorem Th29:
  ex x,y,z st not x,y '||' x,z
    proof consider x,y,z,t such that
     A1: not x,y // z,t & not x,y // t,z by ANALOAF:def 5;
     A2: x<>y & z<>t by A1,Th7;
       now assume A3: x,y '||' x,z;
      thus not x,y '||' x,t
       proof assume A4: x,y '||' x,t; then x,z '||' x,t by A2,A3,Th28;
        then z,x '||' z,t by Th26; then x,z '||' z,t by Th27;
        then x,y '||' z,t or x=z by A3,Th28;
        hence contradiction by A1,A4,Def4; end;
     end;
     hence thesis;
    end;

theorem Th30:
 ex t st x,z '||' y,t & y<>t
  proof consider t such that
   A1: x,y // z,t & x,z // y,t & y<>t by ANALOAF:def 5;
     x,z '||' y,t by A1,Def4;
   hence thesis by A1;
  end;

theorem Th31:
 ex t st x,y '||' z,t & x,z '||' y,t
  proof consider t such that
    A1: x,y // z,t & x,z // y,t & y<>t by ANALOAF:def 5;
      x,y '||' z,t & x,z '||' y,t by A1,Def4;
   hence thesis;
  end;

theorem Th32:
  z,x '||' x,t & x<>z implies ex u st y,x '||' x,u & y,z '||' t,u
   proof assume A1: z,x '||' x,t & x<>z;
    A2: now assume z,x // x,t; then consider u such that
     A3: y,x // x,u & y,z // t,u by A1,ANALOAF:def 5;
       y,x '||' x,u & y,z '||' t,u by A3,Def4;
     hence thesis; end;
       now assume A4: z,x // t,x;
     consider p such that A5: Mid z,x,p & x<>p by Th17;
     A6: z,x // x,p by A5,Def3; then consider q such that
     A7: y,x // x,q & y,z // p,q by A1,ANALOAF:def 5;
       x,p // t,x by A1,A4,A6,ANALOAF:def 5;
     then p,x // x,t by Th5; then consider r such that
     A8: q,x // x,r & q,p // t,r by A5,ANALOAF:def 5;
     A9: now assume q=p; then x,p // z,x & x,p // y,x by A6,A7,Th5;
      then z,x // y,x by A5,ANALOAF:def 5;
      then y,x // t,x & y,z // t,t by A1,A4,ANALOAF:def 5;
      then y,x '||' x,t & y,z '||' t,t by Def4;
      hence thesis; end;
     A10: now assume q=x; then y,z // p,x & p,x // x,z by A6,A7,Th5;
      then y,z // x,z & x,z // x,t by A4,A5,Th5,Th6;
      then y,z // x,t & y,x // x,x by A1,Th6,Th7;
      then y,z '||' t,x & y,x '||' x,x by Def4;
      hence thesis; end;
        now assume A11: q<>p & q<>x;
        p,q // y,z & p,q // r,t & x,q // r,x by A7,A8,Th5;
       then y,z // r,t & y,x // r,x by A7,A11,Th6;
      then y,z '||' t,r & y,x '||' x,r by Def4;
      hence thesis; end;
     hence thesis by A9,A10; end;
    hence thesis by A1,A2,Def4;
   end;

definition let S be non empty AffinStruct;
           let a,b,c be Element of S;
 pred LIN a,b,c means
 :Def5: a,b '||' a,c;
 synonym a,b,c is_collinear;
end;

canceled;

theorem
   Mid a,b,c implies a,b,c is_collinear
  proof assume Mid a,b,c;
    then a,b // b,c by Def3; then a,b // a,c by ANALOAF:def 5;
    then a,b '||' a,c by Def4;
   hence thesis by Def5;
  end;

theorem
   a,b,c is_collinear implies Mid a,b,c or Mid b,a,c or Mid a,c,b
  proof assume a,b,c is_collinear;
    then A1: a,b '||' a,c by Def5;
    A2:  a,b // a,c implies ( Mid a,b,c or Mid a,c,b) by Th11;
      now assume a,b // c,a; then b,a // a,c by ANALOAF:def 5;
     hence Mid b,a,c by Def3; end;
   hence thesis by A1,A2,Def4;
  end;

Lm3: x,y,z is_collinear implies x,z,y is_collinear & y,x,z is_collinear
 proof assume x,y,z is_collinear; then x,y '||' x,z by Def5;
  then x,z '||' x,y & y,x '||' y,z by Th26,Th27; hence thesis by Def5; end;

theorem Th36:
  x,y,z is_collinear implies x,z,y is_collinear & y,x,z is_collinear &
   y,z,x is_collinear & z,x,y is_collinear & z,y,x is_collinear
   proof assume x,y,z is_collinear;
    hence x,z,y is_collinear & y,x,z is_collinear by Lm3;
    hence y,z,x is_collinear & z,x,y is_collinear by Lm3;
    hence z,y,x is_collinear by Lm3;
   end;

theorem Th37:
 x,x,y is_collinear & x,y,y is_collinear & x,y,x is_collinear
  proof x,x '||' x,y & x,y '||' x,y & x,y '||' x,x by Th24,Th25;
   hence thesis by Def5;
  end;

theorem Th38:
 x<>y & x,y,z is_collinear & x,y,t is_collinear & x,y,u is_collinear implies
  z,t,u is_collinear
  proof assume A1: x<>y & x,y,z is_collinear & x,y,t is_collinear &
   x,y,u is_collinear;
   A2: now assume x=z;
     then z<>y & z,y '||' z,t & z,y '||' z,u by A1,Def5;
     then z,t '||' z,u by Th28; hence thesis by Def5; end;
      now assume A3: x<>z;
      x,y '||' x,z & x,y '||' x,t & x,y '||' x,u by A1,Def5;
    then x,z '||' x,t & x,z '||' x,u by A1,Th28;
    then z,x '||' z,t & z,x '||' z,u by Th26;
    then z,t '||' z,u by A3,Th28;
    hence thesis by Def5; end;
   hence thesis by A2;
  end;

theorem
   x<>y & x,y,z is_collinear & x,y '||' z,t implies x,y,t is_collinear
  proof assume A1: x<>y & x,y,z is_collinear & x,y '||' z,t;
      now assume A2: z<>x; x,y '||' x,z by A1,Def5;
    then x,z '||' z,t by A1,Th28; then z,x '||' z,t by Th27;
    then z,x,t is_collinear by Def5;
    then x,z,t is_collinear & x,z,y is_collinear & x,z,x is_collinear
     by A1,Th36,Th37;
    hence thesis by A2,Th38; end;
   hence thesis by A1,Def5;
  end;

theorem
    x,y,z is_collinear & x,y,t is_collinear implies x,y '||' z,t
   proof assume A1: x,y,z is_collinear & x,y,t is_collinear;
       now assume A2: x<>y;
        now A3: x,y '||' x,z & x,y '||' x,t by A1,Def5;
      then x,z '||' x,t by A2,Th28; then z,x '||' z,t by Th26;
      then x,z '||' z,t by Th27; hence thesis by A3,Th28; end;
     hence thesis; end;
    hence thesis by Th25;
   end;

theorem
   u<>z & x,y,u is_collinear & x,y,z is_collinear & u,z,w is_collinear implies
  x,y,w is_collinear
  proof assume A1: u<>z & x,y,u is_collinear & x,y,z is_collinear &
    u,z,w is_collinear;
      now assume A2: x<>y;
      x,y,y is_collinear & x,y,x is_collinear by Th37;
    then z,u,y is_collinear & z,u,x is_collinear & z,u,w is_collinear
      by A1,A2,Th36,Th38;
    hence thesis by A1,Th38; end;
   hence thesis by Th37;
  end;

theorem Th42:
  ex x,y,z st not x,y,z is_collinear
  proof consider x,y,z such that A1: not x,y '||' x,z by Th29;
     not x,y,z is_collinear by A1,Def5;
   hence thesis;
  end;

theorem
   x<>y implies ex z st not x,y,z is_collinear
 proof assume A1: x<>y; assume A2: not thesis;
  consider a,b,c such that A3: not a,b,c is_collinear by Th42;
    x,y,a is_collinear & x,y,b is_collinear & x,y,c is_collinear by A2;
  hence contradiction by A1,A3,Th38;
 end;

reserve AS for non empty AffinStruct;

canceled;

theorem Th45:
 AS=Lambda(S) implies for a,b,c,d being Element of S,
              a',b',c',d' being Element of AS st
     a=a' & b=b' & c =c' & d=d' holds
     a',b' // c',d' iff a,b '||' c,d
 proof
assume AS=Lambda(S);
 then A1: AS = AffinStruct (#the carrier of S, lambda(the CONGR of S)#) by Def2
;
   let a,b,c,d be Element of S;
   let a',b',c',d' be Element of AS;
   assume A2: a=a' & b=b' & c =c' & d=d';
   thus a',b' // c',d' implies a,b '||' c,d
    proof assume A3: [[a',b'],[c',d']] in the CONGR of AS;
     assume not [[a,b],[c,d]] in the CONGR of S;
     hence [[a,b],[d,c]] in the CONGR of S by A1,A2,A3,Def1;
    end;
   assume a,b '||' c,d;
    then a,b // c,d or a,b // d,c by Def4;
    then [[a,b],[c,d]] in the CONGR of S or
                [[a,b],[d,c]] in the CONGR of S by ANALOAF:def 2;
   hence [[a',b'],[c',d']] in the CONGR of AS by A1,A2,Def1;
 end;

theorem Th46:
 AS = Lambda(S) implies
  (ex x,y being Element of AS st x<>y) &
  (for x,y,z,t,u,w being Element of AS
   holds x,y // y,x & x,y // z,z &
     (x<>y & x,y // z,t & x,y // u,w implies z,t // u,w) &
     (x,y // x,z implies y,x // y,z)) &
  (ex x,y,z being Element of AS st not x,y // x,z) &
  (for x,y,z being Element of AS
    ex t being Element of AS st x,z // y,t & y<>t) &
  (for x,y,z being Element of AS
    ex t being Element of AS st x,y // z,t & x,z // y,t) &
 (for x,y,z,t being Element of AS st z,x // x,t & x<>z
    ex u being Element of AS st y,x // x,u & y,z // t,u)
 proof assume A1: AS = Lambda(S);
then A2:  AS = AffinStruct (#the carrier of S, lambda(the CONGR of S)#) by Def2
;
  hence ex x,y being Element of AS st x<>y by REALSET1:def 20;
  thus for x,y,z,t,u,w being Element of AS
   holds x,y // y,x & x,y // z,z &
     (x<>y & x,y // z,t & x,y // u,w implies z,t // u,w) &
     (x,y // x,z implies y,x // y,z)
   proof let x,y,z,t,u,w be Element of AS;
    reconsider x'=x, y'=y, z'=z, t'=t, u'=u, w'=w as
                                Element of S by A2;
      x',y' '||' y',x' & x',y' '||' z',z' by Th24,Th25;
    hence x,y // y,x & x,y // z,z by A1,Th45;
      x'<>y' & x',y' '||' z',t' & x',y' '||' u',w' implies
                                     z',t' '||' u',w' by Lm2;
    hence x<>y & x,y // z,t & x,y // u,w implies z,t // u,w by A1,Th45;
      x',y' '||' x',z' implies y',x' '||' y',z' by Th26;
    hence x,y // x,z implies y,x // y,z by A1,Th45;
   end;
   thus ex x,y,z being Element of AS st not x,y // x,z
    proof consider x',y',z' being Element of S
     such that A3: not x',y' '||' x',z' by Th29;
     reconsider x=x', y=y', z=z' as Element of AS by A2;
       not x,y // x,z by A1,A3,Th45;
     hence thesis;
    end;
   thus for x,y,z being Element of AS
     ex t being Element of AS st x,z // y,t & y<>t
    proof let x,y,z be Element of AS;
     reconsider x'=x, y'=y, z'=z as Element of S by A2;
     consider t' being Element of S such that
     A4: x',z' '||' y',t' & y'<>t' by Th30;
     reconsider t=t' as Element of AS by A2;
       x,z // y,t & y<>t by A1,A4,Th45;
     hence thesis;
    end;
   thus for x,y,z being Element of AS
    ex t being Element of AS st x,y // z,t & x,z // y,t
    proof let x,y,z be Element of AS;
     reconsider x'=x, y'=y, z'=z as Element of S by A2;
     consider t' being Element of S such that
     A5: x',y' '||' z',t' & x',z' '||' y',t' by Th31;
     reconsider t=t' as Element of AS by A2;
       x,y // z,t & x,z // y,t by A1,A5,Th45;
     hence thesis;
    end;
   thus for x,y,z,t being Element of AS st
     z,x // x,t & x<>z ex u being Element of AS st
                                             y,x // x,u & y,z // t,u
    proof let x,y,z,t be Element of AS such that
     A6: z,x // x,t & x<>z;
     reconsider x'=x, y'=y, z'=z, t'=t as Element of S by A2;
       z',x' '||' x',t' & x'<>z' by A1,A6,Th45;
     then consider u' being Element of S such that
     A7: y',x' '||' x',u' & y',z' '||' t',u' by Th32;
     reconsider u=u' as Element of AS by A2;
       y,x // x,u & y,z // t,u by A1,A7,Th45;
     hence thesis;
    end;
 end;

definition let IT be non empty AffinStruct;
 canceled;

 attr IT is AffinSpace-like means :Def7:
  (for x,y,z,t,u,w being Element of IT
   holds x,y // y,x & x,y // z,z &
     (x<>y & x,y // z,t & x,y // u,w implies z,t // u,w) &
     (x,y // x,z implies y,x // y,z)) &
  (ex x,y,z being Element of IT st not x,y // x,z) &
  (for x,y,z being Element of IT
    ex t being Element of IT st x,z // y,t & y<>t) &
  (for x,y,z being Element of IT
    ex t being Element of IT st x,y // z,t & x,z // y,t) &
  (for x,y,z,t being Element of IT st z,x // x,t & x<>z
    ex u being Element of IT st y,x // x,u & y,z // t,u);
end;

definition
 cluster strict non trivial AffinSpace-like (non empty AffinStruct);
  existence
   proof
    consider S;
      (ex x,y being Element of Lambda(S) st x<>y) &
    (for x,y,z,t,u,w being Element of Lambda(S)
     holds x,y // y,x & x,y // z,z &
       (x<>y & x,y // z,t & x,y // u,w implies z,t // u,w) &
       (x,y // x,z implies y,x // y,z)) &
    (ex x,y,z being Element of Lambda(S) st not x,y // x,z) &
    (for x,y,z being Element of Lambda(S)
      ex t being Element of Lambda(S) st x,z // y,t & y<>t) &
    (for x,y,z being Element of Lambda(S)
     ex t being Element of Lambda(S) st
       x,y // z,t & x,z // y,t) &
    (for x,y,z,t being Element of Lambda(S)
      st z,x // x,t & x<>z
      ex u being Element of Lambda(S) st y,x // x,u &
      y,z // t,u) by Th46;
     then Lambda(S) is non trivial AffinSpace-like by Def7,REALSET1:def 20;
    hence thesis;
   end;
end;

definition
 mode AffinSpace is non trivial AffinSpace-like (non empty AffinStruct);
end;

theorem for AS being AffinSpace holds
 (ex x,y being Element of AS st x<>y) &
  (for x,y,z,t,u,w being Element of AS holds
   (x,y // y,x & x,y // z,z) &
   (x<>y & x,y // z,t & x,y // u,w implies z,t // u,w) &
   (x,y // x,z implies y,x // y,z)) &
  (ex x,y,z being Element of AS st not x,y // x,z) &
  (for x,y,z being Element of AS
    ex t being Element of AS st x,z // y,t & y<>t) &
  (for x,y,z being Element of AS
    ex t being Element of AS st x,y // z,t & x,z // y,t) &
  (for x,y,z,t being Element of AS st z,x // x,t & x<>z
    ex u being Element of AS st y,x // x,u & y,z // t,u)
                                           by Def7,REALSET1:def 20;

theorem Th48:
 Lambda(S) is AffinSpace
 proof set AS=Lambda(S);
    (ex x,y being Element of AS st x<>y) &
  (for x,y,z,t,u,w being Element of AS
   holds x,y // y,x & x,y // z,z &
     (x<>y & x,y // z,t & x,y // u,w implies z,t // u,w) &
     (x,y // x,z implies y,x // y,z)) &
  (ex x,y,z being Element of AS st not x,y // x,z) &
  (for x,y,z being Element of AS
    ex t being Element of AS st x,z // y,t & y<>t) &
  (for x,y,z being Element of AS
    ex t being Element of AS st x,y // z,t & x,z // y,t) &
 (for x,y,z,t being Element of AS st z,x // x,t & x<>z
    ex u being Element of AS st y,x // x,u & y,z // t,u)
      by Th46;
 hence thesis by Def7,REALSET1:def 20;
 end;

 theorem
  ((ex x,y being Element of AS st x<>y) &
  (for x,y,z,t,u,w being Element of AS
   holds x,y // y,x & x,y // z,z &
     (x<>y & x,y // z,t & x,y // u,w implies z,t // u,w) &
     (x,y // x,z implies y,x // y,z)) &
  (ex x,y,z being Element of AS st not x,y // x,z) &
  (for x,y,z being Element of AS
    ex t being Element of AS st x,z // y,t & y<>t) &
  (for x,y,z being Element of AS
    ex t being Element of AS st x,y // z,t & x,z // y,t) &
 (for x,y,z,t being Element of AS st z,x // x,t & x<>z
    ex u being Element of AS st y,x // x,u & y,z // t,u))
    iff AS is AffinSpace by Def7,REALSET1:def 20;

 reserve S for OAffinPlane;
 reserve x,y,z,t,u for Element of S;

theorem Th50:
 not x,y '||' z,t implies ex u st x,y '||' x,u & z,t '||' z,u
 proof assume not x,y '||' z,t;
  then not x,y // z,t & not x,y // t,z by Def4; then consider u such that
  A1: (x,y // x,u or x,y // u,x) & (z,t // z,u or z,t // u,z) by ANALOAF:def 6;
    x,y '||' x,u & z,t '||' z,u by A1,Def4; hence thesis;
 end;

 theorem Th51:
  AS = Lambda(S) implies
   for x,y,z,t being Element of AS st
     not x,y // z,t ex u being Element of AS
                   st x,y // x,u & z,t // z,u
  proof assume A1: AS = Lambda(S);
   let x,y,z,t be Element of AS;
   assume A2: not x,y // z,t;
A3: AS = AffinStruct (#the carrier of S, lambda(the CONGR of S)#) by A1,Def2;
  then reconsider x'=x, y'=y, z'=z, t'=t as Element of S;
    not x',y' '||' z',t' by A1,A2,Th45;
     then consider u' being Element of S such that
     A4: x',y' '||' x',u' & z',t' '||' z',u' by Th50;
     reconsider u=u' as Element of AS by A3;
       x,y // x,u & z,t // z,u by A1,A4,Th45;
     hence thesis;
  end;

definition let IT be non empty AffinStruct;
 attr IT is 2-dimensional means
 :Def8: for x,y,z,t
   being Element of IT st not x,y // z,t
    ex u being Element of IT st x,y // x,u & z,t // z,u;
end;

definition
 cluster strict 2-dimensional AffinSpace;
  existence
   proof consider S;
     reconsider AS = Lambda(S) as AffinSpace by Th48;
       for x,y,z,t  being Element of AS st not x,y // z,t
     ex u being Element of AS st x,y // x,u & z,t // z,u
     by Th51;
     then AS is 2-dimensional by Def8;
    hence thesis;
   end;
end;

definition
 mode AffinPlane is 2-dimensional AffinSpace;
end;

canceled;

theorem
    Lambda(S) is AffinPlane
  proof set AS = Lambda(S);
     for x,y,z,t being Element of AS st
     not x,y // z,t ex u being Element of AS
                   st x,y // x,u & z,t // z,u by Th51;
  hence thesis by Def8,Th48; end;

theorem AS is AffinPlane iff
 ((ex x,y being Element of AS st x<>y) &
  (for x,y,z,t,u,w being Element of AS
   holds x,y // y,x & x,y // z,z &
     (x<>y & x,y // z,t & x,y // u,w implies z,t // u,w) &
     (x,y // x,z implies y,x // y,z)) &
  (ex x,y,z being Element of AS st not x,y // x,z) &
  (for x,y,z being Element of AS
    ex t being Element of AS st x,z // y,t & y<>t) &
  (for x,y,z being Element of AS
    ex t being Element of AS st x,y // z,t & x,z // y,t) &
 (for x,y,z,t being Element of AS st z,x // x,t & x<>z
  ex u being Element of AS st y,x // x,u & y,z // t,u) &
  (for x,y,z,t being Element of AS st not x,y // z,t
 ex u being Element of AS st x,y // x,u & z,t // z,u)) by Def7,
Def8,REALSET1:def 20;

Back to top