Journal of Formalized Mathematics
Volume 13, 2001
University of Bialystok
Copyright (c) 2001 Association of Mizar Users

The abstract of the Mizar article:

Some Remarks on Finite Sequences on Go-Boards

by
Adam Naumowicz

Received August 29, 2001

MML identifier: JORDAN1F
[ Mizar article, MML identifier index ]


environ

 vocabulary FINSEQ_1, EUCLID, GOBOARD1, TOPREAL1, BOOLE, MATRIX_1, MCART_1,
      ORDINAL2, FUNCT_5, RELAT_1, REALSET1, SUBSET_1, PSCOMP_1, COMPTS_1,
      PRE_TOPC, TARSKI, FINSEQ_4, TREES_1, ARYTM_1, ABSVALUE, SPPOL_1,
      JORDAN1E, JORDAN9, FINSEQ_6, FINSEQ_5, JORDAN6, TOPREAL2, RELAT_2,
      JORDAN8, FUNCT_1, RFINSEQ, ARYTM_3, JORDAN1A;
 notation TARSKI, XBOOLE_0, XCMPLX_0, XREAL_0, NAT_1, ABSVALUE, RELAT_1,
      FUNCT_1, BINARITH, FUNCT_2, FINSEQ_1, FINSEQ_4, FINSEQ_5, FINSEQ_6,
      MATRIX_1, STRUCT_0, PRE_TOPC, COMPTS_1, CONNSP_1, RFINSEQ, EUCLID,
      TOPREAL1, TOPREAL2, GOBOARD1, SPPOL_1, PSCOMP_1, JORDAN6, JORDAN8,
      JORDAN9, JORDAN1A, JORDAN1E;
 constructors TOPREAL2, FINSEQ_4, REALSET1, GOBOARD9, GOBRD13, PSCOMP_1,
      CONNSP_1, GROUP_1, REAL_1, JORDAN6, JORDAN9, JORDAN5C, JORDAN1E,
      JORDAN1A, JORDAN8, CARD_4, BINARITH, RFINSEQ;
 clusters RELSET_1, SPRECT_1, SPRECT_3, TOPREAL6, XREAL_0, PSCOMP_1, REVROT_1,
      JORDAN1A, JORDAN1E, JORDAN8, NAT_1, MEMBERED;
 requirements NUMERALS, SUBSET, BOOLE, REAL, ARITHM;


begin

reserve i,j,k,m,n,l for Nat,
        f for FinSequence of the carrier of TOP-REAL 2,
        G for Go-board;

theorem :: JORDAN1F:1
 f is_sequence_on G & LSeg(G*(i,j),G*(i,k)) meets L~f &
 [i,j] in Indices G & [i,k] in Indices G & j <= k implies
 ex n st j <= n & n <= k &
 G*(i,n)`2 = inf(proj2.:(LSeg(G*(i,j),G*(i,k)) /\ L~f));

theorem :: JORDAN1F:2
   f is_sequence_on G & LSeg(G*(i,j),G*(i,k)) meets L~f &
 [i,j] in Indices G & [i,k] in Indices G & j <= k implies
 ex n st j <= n & n <= k &
 G*(i,n)`2 = sup(proj2.:(LSeg(G*(i,j),G*(i,k)) /\ L~f));

theorem :: JORDAN1F:3
   f is_sequence_on G & LSeg(G*(j,i),G*(k,i)) meets L~f &
 [j,i] in Indices G & [k,i] in Indices G & j <= k implies
 ex n st j <= n & n <= k &
 G*(n,i)`1 = inf(proj1.:(LSeg(G*(j,i),G*(k,i)) /\ L~f));

theorem :: JORDAN1F:4
   f is_sequence_on G & LSeg(G*(j,i),G*(k,i)) meets L~f &
 [j,i] in Indices G & [k,i] in Indices G & j <= k implies
 ex n st j <= n & n <= k &
 G*(n,i)`1 = sup(proj1.:(LSeg(G*(j,i),G*(k,i)) /\ L~f));

theorem :: JORDAN1F:5
 for C being compact non vertical non horizontal Subset of TOP-REAL 2
 for n being Nat holds Upper_Seq(C,n)/.1 = W-min(L~Cage(C,n));

theorem :: JORDAN1F:6
 for C be compact non vertical non horizontal Subset of TOP-REAL 2
 for n be Nat holds
 Lower_Seq(C,n)/.1 = E-max L~Cage(C,n);

theorem :: JORDAN1F:7
 for C being compact non vertical non horizontal Subset of TOP-REAL 2
 for n being Nat holds
 Upper_Seq(C,n)/. len Upper_Seq(C,n) = E-max(L~Cage(C,n));

theorem :: JORDAN1F:8
 for C be compact non vertical non horizontal Subset of TOP-REAL 2
 for n be Nat holds
 Lower_Seq(C,n)/.(len Lower_Seq(C,n)) = W-min L~Cage(C,n);

theorem :: JORDAN1F:9
   for C being compact non vertical non horizontal Subset of TOP-REAL 2
   for n being Nat holds
   L~Upper_Seq(C,n) = Upper_Arc L~Cage(C,n) &
   L~Lower_Seq(C,n) = Lower_Arc L~Cage(C,n) or
   L~Upper_Seq(C,n) = Lower_Arc L~Cage(C,n) &
   L~Lower_Seq(C,n) = Upper_Arc L~Cage(C,n);

reserve C for compact non vertical non horizontal non empty
              being_simple_closed_curve Subset of TOP-REAL 2,
              p for Point of TOP-REAL 2,
              i1,j1,i2,j2 for Nat;

theorem :: JORDAN1F:10
for C being connected compact non vertical non horizontal Subset of TOP-REAL 2
for n being Nat holds
Upper_Seq(C,n) is_sequence_on Gauge(C,n);

theorem :: JORDAN1F:11  :: symmetric to JORDAN8:9
 for f being FinSequence of TOP-REAL 2
   st f is_sequence_on G &
     (ex i,j st [i,j] in Indices G & p = G*(i,j)) &
     (for i1,j1,i2,j2
      st [i1,j1] in Indices G & [i2,j2] in Indices G &
        p = G*(i1,j1) & f/.1 = G*(i2,j2)
      holds abs(i2-i1)+abs(j2-j1) = 1)
  holds <*p*>^f is_sequence_on G;

theorem :: JORDAN1F:12
for C being connected compact non vertical non horizontal Subset of TOP-REAL 2
for n being Nat holds
Lower_Seq(C,n) is_sequence_on Gauge(C,n);

theorem :: JORDAN1F:13
   p`1 = (W-bound C + E-bound C)/2 &
 p`2 = inf(proj2.:(LSeg(Gauge(C,1)*(Center Gauge(C,1),1),
 Gauge(C,1)*(Center Gauge(C,1),width Gauge(C,1))) /\ Upper_Arc L~Cage(C,i+1)))
 implies
 ex j st 1 <= j & j <= width Gauge(C,i+1) &
 p = Gauge(C,i+1)*(Center Gauge(C,i+1),j);

Back to top