environ vocabulary ARYTM_2, BOOLE, ARYTM_1, ARYTM_3, ORDINAL2, ARYTM; notation TARSKI, XBOOLE_0, ZFMISC_1, SUBSET_1, ORDINAL2, ARYTM_2, ARYTM_1, ARYTM_0; constructors ARYTM_1, ARYTM_0; clusters ARYTM_2, ARYTM_0; requirements BOOLE, SUBSET; begin definition let r be number; attr r is real means :: ARYTM:def 1 r in REAL; end; definition cluster real number; end; definition let x,y be real number; func x + y means :: ARYTM:def 2 ex x',y' being Element of REAL+ st x = x' & y = y' & it = x' + y' if x in REAL+ & y in REAL+, ex x',y' being Element of REAL+ st x = x' & y = [{},y'] & it = x' - y' if x in REAL+ & y in [:{{}},REAL+:], ex x',y' being Element of REAL+ st x = [{},x'] & y = y' & it = y' - x' if y in REAL+ & x in [:{{}},REAL+:] otherwise ex x',y' being Element of REAL+ st x = [{},x'] & y = [{},y'] & it = [{} ,y'+x']; commutativity; func x * y means :: ARYTM:def 3 ex x',y' being Element of REAL+ st x = x' & y = y' & it = x' *' y' if x in REAL+ & y in REAL+, ex x',y' being Element of REAL+ st x = x' & y = [{},y'] & it = [{},x' *' y'] if x in REAL+ & y in [:{{}},REAL+:] & x <> {}, ex x',y' being Element of REAL+ st x = [{},x'] & y = y' & it = [{},y' *' x'] if y in REAL+ & x in [:{{}},REAL+:] & y <> {}, ex x',y' being Element of REAL+ st x = [{},x'] & y = [{},y'] & it = y' *' x' if x in [:{{}},REAL+:] & y in [:{{}},REAL+:] otherwise it = {}; commutativity; pred x <= y means :: ARYTM:def 4 ex x',y' being Element of REAL+ st x = x' & y = y' & x' <=' y' if x in REAL+ & y in REAL+, ex x',y' being Element of REAL+ st x = [{},x'] & y = [{},y'] & y' <=' x' if x in [:{{}},REAL+:] & y in [:{{}},REAL+:] otherwise y in REAL+ & x in [:{{}},REAL+:]; reflexivity; connectedness; synonym y >= x; antonym y < x; antonym x > y; end; definition let x,y be real number; cluster x + y -> real; cluster x * y -> real; end; definition cluster -> real Element of REAL; end; definition let x,y be Element of REAL; redefine func x + y -> Element of REAL; redefine func x * y -> Element of REAL; end; definition cluster natural -> real number; end;