Journal of Formalized Mathematics
Addenda , 1995
University of Bialystok
Copyright (c) 1995
Association of Mizar Users
The abstract of the Mizar article:
-
- by
- Library Committee
- Received December 10, 1995
- MML identifier: ARYTM
- [
Mizar article,
MML identifier index
]
environ
vocabulary ARYTM_2, BOOLE, ARYTM_1, ARYTM_3, ORDINAL2, ARYTM;
notation TARSKI, XBOOLE_0, ZFMISC_1, SUBSET_1, ORDINAL2, ARYTM_2, ARYTM_1,
ARYTM_0;
constructors ARYTM_1, ARYTM_0;
clusters ARYTM_2, ARYTM_0;
requirements BOOLE, SUBSET;
begin
definition let r be number;
attr r is real means
:: ARYTM:def 1
r in REAL;
end;
definition
cluster real number;
end;
definition let x,y be real number;
func x + y means
:: ARYTM:def 2
ex x',y' being Element of REAL+ st x = x' & y = y' & it = x' + y'
if x in REAL+ & y in REAL+,
ex x',y' being Element of REAL+ st x = x' & y = [{},y'] & it = x' - y'
if x in REAL+ & y in [:{{}},REAL+:],
ex x',y' being Element of REAL+ st x = [{},x'] & y = y' & it = y' - x'
if y in REAL+ & x in [:{{}},REAL+:]
otherwise
ex x',y' being Element of REAL+ st x = [{},x'] & y = [{},y'] & it = [{}
,y'+x'];
commutativity;
func x * y means
:: ARYTM:def 3
ex x',y' being Element of REAL+ st x = x' & y = y' & it = x' *' y'
if x in REAL+ & y in REAL+,
ex x',y' being Element of REAL+ st x = x' & y = [{},y'] & it = [{},x' *' y']
if x in REAL+ & y in [:{{}},REAL+:] & x <> {},
ex x',y' being Element of REAL+ st x = [{},x'] & y = y' & it = [{},y' *' x']
if y in REAL+ & x in [:{{}},REAL+:] & y <> {},
ex x',y' being Element of REAL+ st x = [{},x'] & y = [{},y'] & it = y' *' x'
if x in [:{{}},REAL+:] & y in [:{{}},REAL+:]
otherwise it = {};
commutativity;
pred x <= y means
:: ARYTM:def 4
ex x',y' being Element of REAL+ st x = x' & y = y' & x' <=' y'
if x in REAL+ & y in REAL+,
ex x',y' being Element of REAL+ st x = [{},x'] & y = [{},y'] & y' <=' x'
if x in [:{{}},REAL+:] & y in [:{{}},REAL+:]
otherwise y in REAL+ & x in [:{{}},REAL+:];
reflexivity;
connectedness;
synonym y >= x;
antonym y < x;
antonym x > y;
end;
definition let x,y be real number;
cluster x + y -> real;
cluster x * y -> real;
end;
definition
cluster -> real Element of REAL;
end;
definition let x,y be Element of REAL;
redefine func x + y -> Element of REAL;
redefine func x * y -> Element of REAL;
end;
definition
cluster natural -> real number;
end;
Back to top